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Abstract
Non-Intrusive Load Monitoring (NILM) is a promis-

ing technique for disaggregating per-appliance energy
consumption in buildings from aggregate voltage/current
measurements. One major limitation of the approach is that
it typically requires a training phase during which users must
manually label device transitions. In this paper, we present
an inexpensive contactless electromagnetic field (EMF)
event-detector that can detect appliance state changes within
close proximity based on magnetic and electric field fluc-
tuations. Each detector wirelessly transmits state changes
to a circuit-panel energy meter, which can then be used
to label and disambiguate appliance transitions detected
from the aggregate signals as well as to track the associated
energy consumption. Our EMF sensors are able to detect
significant power state changes from a few inches away
making it possible to externally monitor in-wall wiring to
devices (e.g., overhead lights). We experimentally evaluate
our proposed EMF sensor in terms of power consumption,
accuracy and detection range on a variety of appliances to
demonstrate its effectiveness towards augmenting NILM
systems. We show that accurately detecting 100W loads
from 10cm away is possible while maintaining multiple-year
battery life from a coin-cell battery.
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1 Introduction
Understanding where energy is being used is an impor-

tant first step towards energy conservation and efficiency.
There are currently two main approaches for determining the
breakdown of appliance electrical energy usage in a build-
ing. The first approach is to connect appliances directly to
wired or wireless energy meters. This unfortunately can be
expensive in terms of hardware, operation and installation
costs. Moreover, many appliances like overhead lights are
hard-wired and would require an electrician to install each
individual sensor. A less invasive approach being explored
by many smart meter manufacturers and researchers is the
idea of Non-Intrusive Load Monitoring (NILM). The most
common approach to NILM uses a single energy meter in-
stalled at the circuit-panel or other strategic points in the dis-
tribution system to carefully analyze voltage and/or current
transients generated when appliances change their state and
identify the appliance that caused it. This allows the NILM
system to estimate, solely from measurements made at the
distribution panel, what types of appliances are currently
running and how much power they consume. The draw-
back of this approach is that although many signatures are
common across device types, there will inevitably be certain
appliances that require manual site-specific training. NILM
performance can also suffer when many appliances are used
concurrently making it more likely to encounter temporally
overlapping transients.

In this paper, we present a contactless electromagnetic
field (EMF) sensor that can detect appliance power consump-
tion state changes within close proximity, based on mag-
netic and electric field fluctuations. We recommend that this
type of sensing be used to aid in the training of NILM sys-
tems. A FET-based electric field sensor in conjunction with
a coil-based magnetic field sensor is used to robustly iden-
tify changes in appliance power consumption. Each detector
wirelessly transmits state change information about a local
appliance to a main circuit-panel energy meter. A NILM
system then uses these external events, along with informa-
tion about what appliance the field sensor relates to, in or-
der to label and disambiguate the events detected from the
aggregate signals. As compared with other energy monitor-
ing solutions, such as pluggable or inline meters, this solu-
tion is low-cost, easy-to-deploy and can be installed without
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disrupting the current operation of appliances. The sensors
are able to detect current changes associated with the appli-
ance from a few inches away making it possible to externally
monitor in-wall wiring to devices like overhead lights. Our
proposed event detection sensor is compact and consumes
on average 45µW making it ideal for long-term battery oper-
ation. In permanent installations, these sensors can provide
continuous feedback for a NILM system to adjust or re-train
appliance signatures as devices change over time or if new
devices are added.

2 Related Work
Multiple research projects have investigated improving

the observability of energy. The MIT Plug [1] provided users
with power and sensor information by means of a smart surge
protector. In [2], the author’s present experiences using the
ACme wireless plug sensor in an office environment. In [3],
the author’s present ViridiScope which uses indirect sens-
ing of appliances to estimate per-person energy consump-
tion. This work suggests using magnetic field sensors to es-
timate the power consumption of a device. This is similar in
concept to our EMF event detector except that we perform
local processing on a significantly more amplified signal to
detect state changes from distances up to a few inches away
from wires. We found that the geometry between the ca-
ble and the pickup as well as the power factor of the device
being tested make it extremely difficult to estimate power
consumption without device and installation-specific calibra-
tion. Instead, our EMF event detector focuses on only de-
tecting appliance state changes rather than trying to directly
measure power. This information, if time-synchronized with
panel meter data, can be used by a NILM system to quantify
the power consumption of the appliance. Other researchers
have attempted to address the automated annotation problem
by using multi-modal sensor fusion schemes [4]. One of the
primary focuses of this work is on intelligent local process-
ing at the sensor which would benefit these other systems.

Commercial efforts are underway to add sensing devices
in homes so as to provide users with energy-usage feedback.
Google PowerMeter [5] is a software package that interfaces
with smart metering technology to display household energy
usage. Companies like Tendril Inc., AlertMe, Trilliant and
GreenWave Reality are taking a more proactive approach
by offering monitoring devices that home owners can install
themselves to monitor energy. Many of the concepts in this
work will benefit all of these systems by providing lower-
cost collection of richer data with added insight about how
users consume energy. Companies like ArchRock and Sen-
tilla have started using wireless sensor networking technol-
ogy to monitor energy in commercial buildings and data cen-
ters. In general, these approaches either require end-device
metering or focus on circuit-panel level granularity.

Much work has addressed the problem of disaggregating
electrical load using device signatures. In the early stages of
the research area, steady-state changes in real and reactive
power were used as signatures for appliance state-transitions
[6]. Improvements to this work were presented in [7] by in-
troducing a transient pattern matching approach to account
for appliances with similar characteristics in the real and re-

active power signature space. There have also been some
efforts to commercialize the technology by companies like
Enetics. In general these approaches require site-specific
training and become less accurate in environments with a
large number of switching appliances, continuously variable
loads or very similar appliances. Of late, there have been a
number of new research projects aimed at addressing some
of these issues. Some of them also attempt to provide an
automated training approach. Many of these proposed so-
lutions can benefit by the EMF detector we present in this
paper.

3 System Components
In this section, we discuss the various components of

our system required to collect and correlate appliance on/off
events with circuit-level power data. First, we designed a
custom circuit-level meter with built-in communication that
can be used as a gateway to collect event data. Next, we de-
scribe the EMF event detector hardware and firmware. Both
the main circuit-panel meter and the EMF event detector are
built around FireFly wireless sensor nodes that use an AT-
mega1281 micro-controller and the CC2420 802.15.4 radio.
After describing the hardware components of the system, we
discuss two possible event detection algorithms that run lo-
cally on the event detection sensor. It is important to note
that all of our experiments were conducted in 120 VAC 60Hz
signals.
3.1 Circuit-Panel Meter

We designed a custom three-phase power meter, shown
in Figure 1, specifically to perform NILM operations as well
as collect data from our EMF detectors. Off-the-shelf en-
ergy meters often make it difficult to capture high-speed raw
waveforms. In contrast, our meter samples both current and
voltage on each phase at 5KHz and then computes true power
and energy in software. We use this approach to ensure
access to cycle and sub-cycle power data that is required
for transient-based NILM. The tight coupling between the
power sampling and the radio interface reduces timestamp
error between signals sent from the appliance state detectors
and the power values at the circuit panel. A tighter time syn-
chronization also improves the ability of the system to dis-
ambiguate temporally close appliance transitions. The main
board is powered from either 120 or 240 VAC and can sense
voltages as large as 600VAC. Current sensing uses clip-on
style current transformers. We bit-extend the current read-
ings using two ADC channels for each signal (one of which
is amplified) to provide 12-bit current and 10-bit voltage res-
olution. Overall range and accuracy values depend on the
particular configuration of the current transformer used.
3.2 EMF Event Detector Hardware

The core principle behind the EMF event detector is the
ability to sense when an appliance changes state by moni-
toring changes in nearby electromagnetic fields. From the
laws of physics, we know that alternating current flowing
through a conductor will generate a corresponding magnetic
field (H). Typically AC wires run as parallel pairs and hence
most of the magnetic fields cancel out. However, imbalances
in wires and stray currents flowing on ground lines as well as
through appliances produce a significant magnetic field. The
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Figure 2. EMF Event Detector Waveforms. Top: Ceiling fan with light switch activated at point (a), manually turned
on at point (b), and turned off at point (c). Bottom: Desktop computer is an example of a noisy signal due to switching.

Figure 1. Wireless Three-Phase Circuit-Panel Meter

amplitude of this field is generally small (millivolts), but if
sufficiently amplified, one can reconstruct the original source
to a reasonable degree of approximation.

Each time an appliance changes how much power it is
consuming (e.g. for example transitioning between on and
off) there is a corresponding change in the nearby magnetic
field. In contrast, differences in voltages are responsible for
creating electric fields. This means that an appliance that is
not drawing current may still generate a strong electric field
(E). The distinction between the electric and magnetic field
is useful for two reasons. First, the electric field can be used
to detect if a device is ”live” or not. For example, overhead
lights often switch the hot AC lines which can easily be de-
tected by inspecting the electric field. Second, if a device
is powered, but not active, the electric field strength can be
used as a guide to find placement areas where there will be
a strong magnetic field once current begins to flow. Since
the electric field is not dependent on current flowing, abnor-
mal fluctuations in the electric field tend to indicate potential
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Figure 3. EMF Event Detector Circuit

noisy situations. For example, if people are nearby or touch-
ing the sensor, both the electric and magnetic field will be
disturbed.

Figure 3 shows a circuit that detects both magnetic and
electric fields. The magnetic field is detected using an in-
strumentation amplifier (INA) and an inductor. We use a
INA with a fixed 1000x gain that then feeds a high-pass ca-
pacitively coupled filter that removes DC bias to center the
signal given a single ended voltage supply. The amplitude
of the analog output generally corresponds to the strength of
the magnetic field. The lower portion of the circuit uses a
JFET and a small wire acting as a Hertzian antenna to de-
tect potential differences across an electric field. The JFET
opens or closes based on the change in force exerted by the
electric field. The large-valued resistor between the gate and
ground acts as a runoff to remove excess charge buildup from
constant nearby fields.

Figure 2 shows two example waveforms received by the
circuit when placed near a ceiling fan and a desktop com-
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Figure 4. EMF event detector connected to a FireFly sen-
sor node.

puter. Point (a) in the ceiling fan waveform denotes when
the wall switch is turned on which generates a correspond-
ing electric field. At point (b), the ceiling fan is manually
switched on (by pulling the hanging cord) causing current
to flow and hence generating a magnetic field. The bottom
line in the upper graph shows the root mean square (RMS)
value of the magnetic field signal averaged over a window of
16ms (1/60Hz). The bottom graph shows the magnetic field
and the same sliding RMS value for a desktop computer. In
both of these cases the edges in the RMS signal are quite
pronounced.

Figure 4 shows a picture of the EMF detector hardware
connected to a FireFly wireless sensor node. The FireFly
node is responsible for periodically sampling the magnetic
field in order to report appliance activation events. Since
the signal from the EMF detector has a steady-state value
associated with the current of the appliance, the FireFly node
can duty-cycle its sampling to save energy. We explore this
in Section 4. We measured that the EMF detection front-
end consumes approximately 45µW but this value can vary
depending on the strength of the measured magnetic field.
3.3 Event Detection Firmware

We consider events to be instants in time when an appli-
ance changes its state (e.g., goes from off to on). Figure 2,
shown earlier, illustrates two such events, b and c, as cap-
tured by the EMF detector in the magnetic field. Although
the electric field can provide better context about the nature
of the signals, it does not change with the operation of the
appliance. The magnetic field is then used for detecting ap-
pliance events. Given that the raw signal is periodic, instead
of working with it directly, we use the RMS value (HRMS) to
detect significant changes. Through experiments described
in the section that follows, we determined that a fixed-size
window of T samples, where T is a positive integer multi-
ple of the period of these signals, provides the best results in
terms of the resulting variance.

We experimented with two different event detectors. The
first is a simple threshold detector based on the RMS:
HRMS > t. The threshold value t was determined dur-
ing a short calibration period at the moment of installa-
tion. After collecting a few seconds of data, t is set to
1/2(max(HRMS)−min(HRMS)). We will refer to this ap-
proach as the threshold detection scheme.

The second is a probabilistic approach based on the Gen-
eralize Likelihood Ratio (GLR) test, which makes a Gaus-
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Figure 5. Experimental Setup
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Figure 6. Measured RMS field strength vs distance for
various coil sizes

sian assumption about the distribution of the signal. We
chose this algorithm based on work that has demonstrated
its success in detecting HVAC and ligthing events on power
signals [8]. Equation 1 is applied to a fixed-size sliding win-
dow over HRMS, to detect the sample indices where there is
a significant change in mean. This detection window is of
size k− l + 1. The equation requires that σ, the expected
standard deviation of the signal, be specified a priori. Just
as with the simple thresholding scheme, a few seconds of
data were collected after placing the EMF detector at each
location to estimate this value.

ek =
1

2σ2 max
l≤ j≤k

1
k− j +1

(
k

∑
i= j

(HRMS[i]−µ0)

)2

(1)

The threshold detection scheme has the advantage of be-
ing very simple to implement and potentially achieving good
results on two-state appliances given that an appropriate cal-
ibration period is given. Conversely, the GLR approach is
better suited for detecting events of multi-state appliances
but requires more processing power. Also, the threshold de-
tection scheme requires a full on / off transition to occur be-
fore it can accurately detect events. In contrast, the GLR ap-
proach only requires an expected variance value which can
be captured by sampling the signal for a short period of time.

4 Evaluation
In this section, we evaluate the performance of both the

magnetic and electric field sensing circuits and discuss the
accuracy and energy requirements of the EMF detection
node. Figure 5 shows a diagram of our experimental setup
intended to test the receiver’s sensitivity with respect to var-
ious AC loads and at particular distances from a long thin
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Figure 7. Measured RMS field strength vs load power for
100mH coil at 1cm.

wire. The intent was to simulate the scenario where the sen-
sor is detecting energy either from in-wall wiring or directly
from appliance cables. The appliance test load was generated
from purely resistive elements.

In order to keep the design both low-cost and compact,
we first evaluated the impact of different inductor coil sizes
on the magnetic field detectors range. Figure 6 shows how
the receiver performs with three different coil sizes given a
fixed 1KW load as distance from the wire is varied. Values
on the y-axis represent the RMS value of the ADC samples
captured by the node’s MCU. We see that larger inductors
are able to capture smaller signals; however, proximity to
the wire plays a more pronounced role in signal intensity. In
this case, the 100mH inductors is almost one-tenth the size of
the 470mH one and can compensate for the freespace losses
in energy by simply moving slightly closer. We also see that
wth a distance of 10cm, the smaller inductor is still able to
detect the load.

In the next experiment, we placed the magnetic sensor
with the 100mH inductor 5cm away from the wire while ad-
justing the test load. In Figure 7, we see a linear change
in signal strength until the sensor begins to saturate at about
500 Watts. Though there is a correlation between current and
signal level, as we saw in the previous figure, this is heavily
dependent on the distance from the wire (as well as other
geometry) and hence would not be accurate for estimating
power without calibration.

Next, we evaluate the sensitivity of the electric field detec-
tor. In Figure 8, we varied the length of the receiving antenna
and plot the corresponding peak voltage that is output by the
JFET. We see a relatively linear response, which is expected
given a near-field detector operating at a miniscule fraction
of the 60Hz wavelength. Figure 9 shows the performance of
a 5cm antenna with respect to distance from the wire. Note
that since it detects the electric field, the load has no impact
on these values.

We deployed the EMF sensor near 8 different types of ap-
pliances and collected the raw ADC waveforms for analysis.
Since often times the high-frequency switching noise gen-
erated by appliances is useful information, we sampled the
ADC as quickly as practically possible (in this case 15KHz).
We then evaluated the number of required samples in order to
ascertain a good estimate of RMS signal strength by varying
the window size and computing the average standard devia-
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Figure 8. FET antenna length vs distance fixed at 10cm
from cable.
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tion of these windows. Figure 10 shows the average standard
deviation of the windows used to compute the RMS values
for a few representative appliances (other appliances were
very similar) over an increasing window size. Initially, the
variance is low since the signal does not have time to change,
but eventually we see that it starts oscillating around a fixed
value, and that these oscillations may be related to the integer
multiples of the period T .

From the 8 appliances studied, we captured more than 40
labeled transitions. These appliances included a refrigerator,
overhead light, fluorescent light, desktop computer, toaster
oven, fan, TV and air conditioner. Of the 40 transitions, all
were captured correctly with one false positive due to an un-
known noise source, shown in the upper graph of Figure 2,
over a total period of 1 hour. In the event of false positives,
the NILM system can filter them out if there is no corre-
sponding change in mains power.

By duty-cycling how often the sensor node wakes up to
capture a window of data, we can significantly reduce energy
at the cost of detection latency. The other major component
of power consumption is the radio required to relay infor-
mation back to the gateway. We assume a model where the
radio is only required to wakeup and transmit when an event
is detected and it does not have to listen to the channel to
route packets hence the expected appliance detection period
has a significant impact on the node’s lifetime. In Figure 11,
we show the impact of latency on node lifetime given various
different expected detection periods.

These curves are based on a 650mAh lithium coin-cell
battery with the EMF detector being sample by the AT-
mega1281 and data being transmitted using the CC2420 ra-
dio. We also included the leakge current within the battery
derived from a 5 year shelf-life. We see that even with ex-
pected appliance transitions multiple times per minute and
latencies around 1 second, we can expect a multiple-year
battery life. Testing conditions for a 1000ms latency and
1 packet transmission per second, we measured the actual
detector energy consumption to be 0.06mA which is within
30% of the predicted value.

5 Limitations
There are three main limitations to this approach. First,

a local event detector still has the challenge associated with
determining which internal state transitions are significant.
In our system, we were focused on signaling large state
changes, but often appliances could have a sequence of small
internal states or continuously variable consumption. In this
cases a different type of detection algorithm may need to be
investigated, perhaps one that analyzes the signals in the fre-
quency domain. The second limitation is that these devices
can suffer from cross-talk with different appliances if the de-
vices or cabling are in close proximity of each other. Part of
optimizing the design is to build a device where the range is
large enough to detect hard to reach wires, but small enough
to minimize overhearing other signals. The final limitation
to this system is that it requires additional hardware so as to
increase the accuracy of a system that could theoretically op-
erate on its own. We believe that until NILM systems get to
the point where they no longer require calibration that some

form of local event detection will be required.
6 Conclusions

In conclusion, this paper presents a contactless EMF sens-
ing device that can be used to identify and wirelessly relay
electrical appliance state transitions. We propose that such
a device be used to augment Non-Intrusive Load Monitoring
systems allowing them to automatically label, train or tune
appliance classifiers at runtime. As compared with other en-
ergy monitoring solutions, the combination of NILM along
with EMF sensing is low-cost, easy-to-deploy and can be
installed without disrupting the current operation of appli-
ances. Since the sensors are proximity-based they are able
to detect current changes associated with the appliance from
a few inches away making it possible to externally moni-
tor in-wall wiring to devices like overhead lights. We use
a secondary electric field sensor to help guide placement
of the sensor as well as utilize the electric fields stability
to help filter out potential noise. We show that these de-
vices can operate from a coin-cell sized battery for up to 2.5
years depending on desired latency and expected appliance
transitions. Further tests need to be conducted to evaluate
the effectiveness of the devices in detecting state transitions
for more complex cases (e.g., HVAC systems), although the
GLR detection algorithm was chosen due to its reliability in
these scenarios.
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