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Abstract
Fine-grained awareness on how and where energy is spent

is being increasingly recognized as the key to conserve en-
ergy. While several solutions to monitor the energy con-
sumption patterns for commercial and industrial users ex-
ist, energy reporting systems currently available to residen-
tial users require time-consuming and intrusive installation
procedures, or are otherwise unable to provide device-level
reports on energy consumption. To fill this gap, this paper
discusses the design and performance evaluation of the Tiny
Energy Accounting and Reporting System (TinyEARS), a
fine-grained energy monitoring system that generates device-
level power consumption reports primarily based on the
acoustic signatures of household appliances. Experiments
demonstrate that TinyEARS is able to report the power con-
sumption of individual household appliances within a 10%
error margin.
Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous
General Terms

Measurement, Design, Experimentation
Keywords

Energy Monitoring, House Appliances, Audio Data Clas-
sification, Wireless Audio Sensor Networks
1 Introduction

Residential spaces account for approximately 21% of the
total energy consumption in the United States [1], with rais-
ing figures worldwide. This motivates the growing inter-
est in smart building technology to automate and otherwise
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promote energy conservation in residential and commercial
spaces. However, while businesses rely increasingly on pro-
cedures and best practices to save energy and reduce costs,
most home users do not have any means to control their en-
ergy usage patterns. The main resources in a typical house-
hold are electricity, water, natural gas, and heating oil. Sav-
ing a small portion of each in each residential space could
have a significant impact on reducing costs, energy con-
sumption, and impact on the environment. Several studies
[2][3] have shown the necessity of fine-grained energy mon-
itoring to encourage conservation.

Motivated by this, in this paper we discuss the design
and implementation of a wireless monitoring system for
residential spaces based on a multi-layer decision architec-
ture, called Tiny Energy Accounting and Reporting System
(TinyEARS). The objective of TinyEARS is to detect and
classify “on” devices based on their acoustic signatures and
report device-level energy consumption by correlating node
decisions with time and power information obtained from a
real-time power meter.

The paper discusses the architecture, signal acquisition
and processing, and algorithmic details of TinyEARS. The
key contributions of our work are as follows:
• The multi-layer architecture of TinyEARS enables fine-

grained energy monitoring at the device level by lever-
aging the acoustic signatures of house appliances. This
information is correlated with the overall power us-
age information of the house obtained from a real-time
power meter;

• While most of the existing solutions for device-level
monitoring require one sensor node per appliance, in
TinyEARS a single sensor node monitors house ap-
pliances in a room based on their acoustic signatures.
Deploying one sensor node per room reduces both the
overall cost and communication burden of the wireless
sensor network;

• TinyEARS, being based on a limited number of sensor
nodes, is an easily deployable and maintainable system;

• Our study shows that house appliances can be recog-
nized with an overall success rate of 94% by their
acoustic signatures with relatively simple processing al-
gorithms implemented on the motes;

• Finally, we discuss the main system design challenges



and their solutions in implementing an audio classifica-
tion process on an Imote2 sensor node.

The rest of this paper is organized as follows. In Sec-
tion 2, we review existing solutions for energy monitoring
in residential spaces. In Section 3, we introduce the system
architecture of TinyEARS. Section 4 describes the details of
the house appliance sound recognition system (HASRS). In
Section 5, we describe the data acquisition and correlation
process of TinyEARS. In the same section, we also discuss
the issues and challenges of implementing the HASRS on
Imote2. Section 6 describes our experimental environment
and presents the test results obtained using Imote2 and the
TED5000 power meter.
2 Related Work

Previous work on monitoring energy consumption in res-
idential spaces can be broadly classified into two categories.
The first group is concerned with systems designed to mea-
sure the overall energy consumption with a single sensor,
usually located in a power box. The second approach is
to monitor each household appliance individually, with fine-
grained consumption feedback.

There exists several commercially available products to
measure the overall energy consumption of a household, in-
cluding Power Cost Monitor [4], Wattson [5], and TED-xxxx
[6]. Although it is moderately difficult to install these de-
vices, they do not require any maintenance once deployed.
However, while these products are able to present the overall
energy consumption and detect anomalies in energy usage,
they cannot provide per-appliance energy measurement. A
different product, the Google Power Meter [6], is an opt-in
software tool that allows users to visualize detailed home en-
ergy information.

Device-level monitoring has recently received attention in
the literature because it is able to provide fine-grained feed-
back on energy consumption. To monitor each device indi-
vidually, two approaches have been considered in the litera-
ture, i.e., (i) installing electrical current sensors inline with
each appliance, and (ii) deploying multiple sensors through-
out the household. Some commercial products, based on
electrical current sensors, are already available, e.g., Plogg
[7], Kill-a-Watt [6], and Watts Up [6]. Although these prod-
ucts provide fine-grained energy monitoring, they require in-
line installation between a standard AC plug and the outlet.
Therefore, some appliances such as heating and ventilation
systems (HVAC), and ceiling lights can not be easily instru-
mented, since they lack AC plugs and have wired connec-
tions.

Researchers have recently proposed deploying sensor net-
works in residential spaces to achieve device-level monitor-
ing of energy consumption. In [6], the authors developed
Viridiscope, a system designed to provide device-level power
consumption feedback by using magnetic, acoustic and light
sensors. Ambient signals from sensors placed near appli-
ances are used to estimate power consumption.

Schoofs et al. [8] propose ANNOT (Automated Electric-
ity Data Annotation), a system to automate electricity data
annotation leveraging cheap wireless sensor nodes such as
temperature, sound, light and accelerometer. ANNOT au-
tomatically acquires appliance signatures, collects training

Figure 1. Multi-layer decision architecture of TinyEARS.

data, validates the monitoring output without human super-
vision, and is integrated within the RECAP (Recognition and
Profiling of Appliances) appliance load monitoring system.

Marchiori and Han [9] explore an alternative approach to
monitor household energy usage, including small devices.
They propose using circuit-level energy measurements as a
compromise between the two aforementioned approaches.
The drawback of this approach is that the accuracy of the sys-
tem decreases dramatically with increasing number of house
appliances on each circuit.

Finally, several studies [10][11][12] use wireless sensor
networks for energy efficiency without directly addressing
energy monitoring in residential spaces. For example, in
[10] the authors design a system where system parameters
are automatically set according to user profiles to minimize
the energy consumption while guaranteeing a desired com-
fort level. Erickson et al. [12] achieve a 14% reduction in
HVAC energy usage by having an optimal control strategy
based on occupancy estimates and usage patterns.

TinyEARS differs from existing solutions by combining
information from acoustic signatures of house appliances
and power meter readings through a multi-layer architec-
ture. The system allows deploying one single sensor node
per room. TinyEARS can potentially combine the individ-
ual features of different types of sensors such as light, tem-
perature and magnetic to improve the accuracy of energy
consumption in a residential space. However, this paper is
focused on the detection of household appliances emitting
acoustic signals.
3 System Design

TinyEARS is composed of a multi-layer decision archi-
tecture that includes (i) an event detection layer, (ii) a device
detection layer and (iii) a time correlation layer, as shown in
Figure 1. Operations within each layer are handled by in-
dividual software modules running on the Data Fusion Cen-
ter (DFC). The Event Detection Module (EDM) communi-
cates with the real-time power meter and uses a basic filtering
mechanism to detect changes in the use of house appliances.
When an event is detected, the EDM alerts the Device De-
tection Module (DDM). The DDM controls communication
with the sensor nodes through control packets that trigger
sensor nodes to start collecting audio samples. Based on the
collected samples, each individual sensor decides which (if
any) house appliances are active. Each sensor node reports



Figure 2. MTU Connection.

its decision back to the DDM along with a confidence value.
The DDM sends event information and node decisions to the
Time Correlation Module (TCM). The TCM may decide to
rely on the node decision or override it with a better match.
The TCM creates alternative decisions by correlating time,
power usage and node decisions. A set of rules have been
defined for the correlation operation, whose details will be
discussed in Section 5.5.

TinyEARS consists of three main components: a real-
time power meter, a DFC, and sensor nodes. The real-time
power meter is used to monitor changes in power usage in
the household. There are several off-the-shelf power meters
with different capabilities and prices. We have used the TED
5000 produced by Energy Inc., because of its simple instal-
lation procedure, very accurate readings, and open develop-
ment API. The TED 5000 system consists of three units: a
measuring transmitting unit (MTU), a gateway, and a user
display unit. The MTU is mounted on the main electric panel
of the house as shown in Figure 2. It measures and trans-
mits energy, power, and voltage information to the gateway,
which can be plugged to any outlet in the house. Real-time
and historical data can be accessed by utilizing the gateway’s
Ethernet interface. The DFC is a typical PC that runs EDM,
DDM, TCM modules, and a configuration utility to manage
initial training of TinyEARS.

In TinyEARS, sensor nodes are required to perform sig-
nal processing operations including Fast Fourier Transform
(FFT), feature extraction and classification. Therefore, we
have used the Imote2 [13] sensor node platform that can sat-
isfy the processing and memory requirements of these algo-
rithms [14].

4 On-Board Real-Time Device Classification
Discriminating devices based only power meter readings

or on electrical noise on power lines is a complex task.
Therefore, we propose an advanced architecture, TinyEARS,
where the key idea is to infer the energy consumption of
house appliances by primarily relying on their acoustic sig-
nature. The fact that most house appliances (e.g, refrigerator,
dishwasher, exhauster, blender, vacuum cleaner, washer, and
hair dryer) contain a motor suggests that it is possible to rec-
ognize them and infer their state (active or inactive) based on
their acoustic signature [15]. To the best of our knowledge,

Table 1. Comparison of different types and number of
features.

Physical MFCC MFCC MFCC
Features (5) (9) (13)

Recognition 76.78 89.65 93.12 94.35Ratio(%)

however, the sound characteristics of house appliances have
not been explored yet. We have therefore concentrated on
feature extraction and classification algorithms that had been
successfully applied before to mechanical sound classifica-
tion problems such as vehicle classification.
4.1 Feature Extraction

In this study, seven different audio features are primarily
considered, including zero-crossing rate (ZCR), short-time
energy (STE), band-level energy (BLE), spectral-centroid
(SC), spectral roll-off (SRO), spectral flux (SF), and mel-
frequency cepstral coefficients (MFCC) [15] . To obtain a
high classification accuracy, we have selected effective and
robust feature combinations for discriminating the acoustic
signatures of household appliances. The preliminary analy-
sis of power spectral densities of house appliances obtained
via an audio signal processing tool AudaCity shows that the
discriminative frequency band is between 0 and 1kHz. Be-
fore implementing our algorithms on the sensor nodes, we
ran extensive MATLAB tests whose results are summarized
in Table 1 to validate our feature set.
4.1.1 Mel Frequency Cepstral Coefficients

The MFCC, introduced in [15] as a candidate feature ex-
traction method for stationary audio signals, perform better
than other feature extraction methods such as Fourier trans-
form, human factor cepstral coefficients, fast wavelet trans-
form and short-time Fourier transform. Since the sounds of
house appliances can be considered to be stationary, we ap-
plied the MFCCs for our audio classification problem. There
are five main processing steps for obtaining MFCC features
of an audio signal. First, the audio signal is fragmented into
frames of predefined length. Then, each frame is multiplied
with a Hamming window to maintain the continuity between
the first and the last points in the frame. Then, the FFT is ap-
plied to the signal and smoothened by a series of triangular
filters, including 13 linear filters below 1kHz and 27 loga-
rithmic filters within 1 − 6.4kHz. The MFCCs are finally
calculated. The complete coefficient extraction procedure is
described in [16].

Since discriminative frequencies of each house appliance
are concentrated below 1kHz, we omitted logarithmic filters
that are applied only to the frequencies above 1kHz and eval-
uated our audio classification process for different number of
cepstral coefficients to compare the recognition success rate.
4.2 Classification

In the classification step, the objective is to recognize
“on” devices based on the MFCC features. Several classifi-
cation algorithms, including support vector machines (SVM)
and k-nearest neighbor (k-NN), have been previously pro-
posed for environmental sound classification [15].

During our preliminary design phase, we compared the
household appliance recognition success rates of MDC, k-



Table 2. Comparison of k-NN, SVM and MDC with 9
MFCC features of 7 house appliances.

MDC k-NN SVM
Success Rate (%) 93.69 97.14 97.74

NN and SVM through Matlab simulations. Our findings, re-
ported in Table 2, show that the success rates do not vary sig-
nificantly for the considered application. The performance of
k-NN and SVM is only slightly better than MDC. Therefore,
even though Imote2 motes have the capability to run com-
plex classification algorithms, we decided to use a simple
classifier as MDC, characterized by a relatively low compu-
tational cost, to speed up the decision process on each sensor
node and reduce the energy consumption.
4.2.1 Minimum Distance Classifier

The minimum distance classifier algorithm aims at find-
ing the closest class centroid to the given test sample.

Let x be an unknown sample to be classified, and yi, i =
1, ...,n be a prototype for class (ci). Both x and yi are m-
dimensional vectors in the feature space, n is the number of
classes, and m is the number of dimensions of the feature
space. The minimum distance classifier is defined as

x ∈ (ci) ≡ d(x,yi) = min
j∈1,..n

d(x,y j),

where d(a,b) represents the Euclidean distance function.
4.2.1.1 Training Process

The system needs to be trained using the sound of each
house appliance to generate their acoustic signatures. The
training process is done only once after deploying the sensor
nodes. This process takes place on the DFC. The acoustic
signatures of each house appliance are generated at the end
of this process. After training the system on the DFC, the
mean values and scale coefficients of each class, which are
used to normalize the feature set, are delivered to the corre-
sponding sensor node in the house.
4.2.1.2 Test Process

In the test phase, after sampling audio data, the sensor
node extracts the MFCC features of the signal. Then, it cal-
culates the Euclidean distance to each class. The class with
minimum distance and the distance are sent to the DFC.

5 Data Acquisition and Processing
TinyEARS requires real-time power usage information

and node decisions to estimate the power consumption of
individual house appliances.

5.1 Interfacing With the Power Meter
Energy Inc. provides an XML-based development API to

retrieve real-time and historical data from the gateway. In-
terfacing with the real-time power meter involves two oper-
ations. First, an HTTP request is sent to the TED5000 gate-
way. The gateway replies back with a XML file that contains
information including a time stamp, voltage, and power from
several MTUs. In the second step, this XML file is parsed to
extract relevant information, i.e., time stamps and power us-
age of a particular MTU.

Table 3. Sample Data Fusion Operation.

Time 10:10:54 10:14:41 10:21:12
Power Usage 348.9 410.4 335.5

Distance Value 0.105 0.165 0.129
Node Decision Ref. Exh.(H) Ref.

Correlated Data Ref. Ref & Ref.Exh.(H)

Real Data Ref. Ref & Ref.Exh.(H)

5.2 Data/Event Filtering
The DFC monitors power changes in the household and

decides whether a device has been turned on or off. In our ex-
periments, we have noticed two types of anomalies related to
the power consumption of house appliances. First, the power
consumption of some devices in the household varies in time.
Second, some devices cause a peak in power consumption
when they are turned on and then descend to a lower power
consumption level. Thus, basic approaches like using the
difference between the last two readings fail to correctly de-
tect changes in device states. In our system, we employ two
basic filtering techniques to overcome this problem. First,
when a change occurs between the last two readings, the dif-
ference in power usage is tested against a pre-defined thresh-
old. The purpose of this threshold is to eliminate the effect
of devices with varying power consumption. If the change
is greater than the threshold, a second filter is applied. The
DFC keeps monitoring the power usage for five additional
seconds and calculates the average of these values. This low-
pass filter is used to remove peaks and estimate the actual
steady-state change in current absorption caused by the de-
vice. This value is also used by the TCM to validate and
(possibly) override node decisions.

5.3 Audio Sampling at the Sensor Node
The ITS400 [13] sensor board is designed to be interfaced

with Imote2. It contains a three-axis accelerometer, an ad-
vanced temperature/humidity sensor, a light sensor and a 4-
channel Analog/Digital Converter (ADC). The ADC on this
board can be used to interface with different analog sensors.
In our application, one of the four available ADC channels
is used to interface an electret microphone. The ADC on
the ITS400 sensor board can provide 10- and 12-bit samples.
To preserve the quality of the captured sound, we use 12-bit
samples. Figure 3 shows the microphone connected to the
Imote2 sensor node.

5.4 Implementing Device Classification on
Imote2

In our study, we have implemented the house appli-
ance sound recognition system (HASRS) component of
TinyEARS on imote2 sensors. Each mote is responsible for
its individual room/space. Motes wait in the idle state un-
til they receive a command from the DFC. In our tests, the
mote is always in the “on” state and monitors the channel for
command messages. After receiving the command, the mote
performs audio classification including sampling audio data,
extracting features (MFCC), processing minimum distance



Figure 3. Imote2, ITS400 and electret microphone.
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Figure 4. Success Rate of Audio Classification.

classifier. After finalizing a decision, each mote transmits
the decision class label and the distance value to the DFC.

We faced a number of challenges in implementing a fully
functional HASRS component. The .Net Micro Framework
has some restrictions that need to be worked around to im-
plement complex applications like MFCC. This includes the
lack of mathematical methods such as log(), sin(), cos(),
which led us to override the existing math library with a new
library from ALGLIB [17].
5.5 Data Fusion Rules

When a sensor node performs classification of the sam-
pled audio, it calculates the distance between the sample and
all possible classes. Then, it classifies the sample as be-
longing to the class with minimum distance. In the multi-
layer decision architecture of TinyEARS, the distance value
is used by the TCM module. In the case where only a single
device is working, the HASRS identifies the sample as be-
longing to one of the classes in the system with very low dis-
tance. The distance is higher when the sampled audio con-
tains superimposed sounds of multiple devices. The distance
value is then used by the TCM to discriminate and make de-
cisions in situations when multiple devices are active at the
same time.

If the distance value is lower than the predefined thresh-
old, the DFC accepts the decision of the node as is. If the
distance value is greater than the threshold, the DFC com-
bines time and power consumption information and may
override the node decision. This override operation is per-
formed based on a set of predefined rules.

TCM identifies node decisions with low confidence and
calculates the change in power usage ∆pm. A positive
change means that a device has been turned on, whereas a
negative change indicates that a device has been turned off.

Table 4. Real Working Time vs. Estimated Working
Time.

Device Name
Working Time

Real [min] Estimated [min] Success
Rate(%)

Blender 3 3 100
D/W (State 1) 5.3 7.15 65
D/W (State 2) 33.5 32.05 95.67
Exh. (High) 14.46 14.46 100
Exh. (Low) 7 3.5 50
Refrigerator 154.36 158 97.64

When ∆pm is positive, a list of possible devices is gener-
ated based on ∆pm and known levels of power consumption
of devices. Then, unfeasible options are eliminated based
on previous node decisions. When ∆pm is negative, the
power consumption of each device in the previous time slot
is compared with ∆pm, and any matching device is marked
as “turned off” for the current time slot. Table 3 shows an
example of the time correlation operation. The TCM consid-
ers node decisions with a distance value below the threshold
(set to 0.140 in the experiments reported).

6 System Evaluation
6.1 Deployment

To test and validate our design, we have deployed
TinyEARS in a two bedroom apartment in Buffalo, NY. Dur-
ing deployment, a TED5000 power meter was connected to
the electric panel, a laptop configured as DFC, and a sen-
sor node deployed in the kitchen. In-situ training phase of
TinyEARS enables a flexible deployment. Thus, sensor node
can be placed anywhere in the room. The kitchen was se-
lected since it is the most challenging room as multiple ap-
pliances are often used there concurrently.

During the tests, occupants of the house took accurate
notes of “turn on” and “turn off” times of each device in the
house. A ground truth for working devices and their power
consumption was constructed by combining these notes and
real-time power readings gathered from power meter on ev-
ery second. This ground truth is only used to evaluate the
system performance during the test phase. This experimental
deployment was held for three days. Audio samples from the
first day were used as a training set for the system. The per-
formance of TinyEARS was evaluated in the next two days.

6.2 Test Results
To evaluate the performance of TinyEARS, we have ob-

served four house appliances and their different run levels,
i.e., refrigerator, dishwasher (state 1 and state 2), exhauster
(low and high) and blender. Since TinyEARS is based on a
multi-layer decision architecture, we assess the success rates
of each layer individually.

The first layer of TinyEARS is the node level decision.
The audio classification module was tested for 104 different
activities. There might occur 7 different individual activities
in the kitchen, i.e., no activity, blender, dishwasher (state1,
state 2), exhauster (low, high), and refrigerator. The success
rate of the recognition process for each appliance and its run
level is shown in Figure 4.



Table 5. Success Rate of TinyEARS.

Device Name
Power Consumption

Real [W] Estimated [W] Success
Rate(%)

Refrigerator 411.62 421.33 97.69
D/W (State 1) 36.66 47.67 76.90
D/W (State 2) 502.5 480.75 95.67
Exh. (High) 26.51 26.51 100
Exh. (Low) 8.16 4.08 50

Blender 15 15 100
Overall 1000.45 995.34 99.49

The overall system performance was evaluated by
comparing power consumption information reported by
TinyEARS to the ground truth data of two-day long activ-
ities. Table 5 shows the success rate of TinyEARS in esti-
mating the power consumption of each house appliance.

At the second layer, the DFC correlates node decisions,
time and power usage information to detect working house
appliances. Table 4 shows the estimated working time of
the monitored house appliances based on this correlation and
their real working time.
7 Conclusions and Future Work

In this paper, we presented TinyEARS, a fine-grained en-
ergy monitoring system for residential spaces using indi-
rect audio sensors. TinyEARS is designed to eliminate the
complexity of the installation and maintenance procedures
of existing power metering solutions. TinyEARS employs a
multi-layer decision architecture that exploits the true capa-
bilities of sensor nodes by processing sensor data on the node
itself, thus limiting transmissions over the wireless chan-
nel. This architecture combines various sources of informa-
tion to reach an accurate estimation of the consumption pat-
terns. Experiments show that the multi-layer architecture of
TinyEARS enables monitoring device-level power consump-
tion with less than 10% error. In addition, TinyEARS can
easily monitor the power consumption of multiple simulta-
neously active appliances as well as appliances with variable
power consumption.
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