

Commercial

Technical Reference Manual

Version 2016.1

Effective Date: July 1, 2015

Efficiency Maine Trust 168 Capitol Street Augusta, ME 04330 efficiencymaine.com

Table of Contents

TABLE OF CONTENTS	2
INTRODUCTION	4
TRM CHANGE LOG	10
LIGHTING EQUIPMENT	14
PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – INTERIOR SPACES (NEW CONSTRUCTION), CODE L16, L31, L33, L35, L41, S21, S41, S51, S61, S81 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – INTERIOR SPACES (RETROFIT), CODE L10, L10.1, L15, L15.1, L20, L25, L30, L30.1, L32, L32.1, L3 L40, S20, S40, S50, S52, S60, S80 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES WITH INTEGRATED CONTROLS – INTERIOR SPACES (NEW CONSTRUCTION), CODE S71 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES WITH INTEGRATED CONTROLS – INTERIOR SPACES (RETROFIT), CODE S70 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – LED EXIT SIGN, CODE X10 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – EXTERIOR SPACES (NEW CONSTRUCTION), CODE S71 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – EXTERIOR SPACES (NEW CONSTRUCTION), CODE S70 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – EXTERIOR SPACES (NEW CONSTRUCTION), CODE S70 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – EXTERIOR SPACES (NEW CONSTRUCTION), CODE S70	16 5, 18 20 22 24
PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – EXTERIOR SPACES (New CONSTRUCTION), CODE S11, S13, S15, S17, S23	25
PRESCRIPTIVE LIGHTING: LIGHTING FORTROLS – INTERIOR SPACES, CODE L60, L70, L71, L60.1, L70.1, L71.1 PRESCRIPTIVE LIGHTING: LIGHTING FIXTURES – REFRIGERATED SPACES, CODE S30, S31, S32, S33 PRESCRIPTIVE LIGHTING: LIGHTING CONTROLS – REFRIGERATED SPACES, CODE L50	28 30 32
VARIABLE FREQUENCY DRIVES	34
Prescriptive VFD: Variable Frequency Drives (VFD) for HVAC	35
HVAC EQUIPMENT	
Prescriptive HVAC: Unitary Air-Conditioners	38
Prescriptive HVAC: Heat Pump Systems	40
Prescriptive HVAC: Packaged Terminal Air Conditioners and Heat Pumps	42
PRESCRIPTIVE HVAC: DEMAND CONTROL VENTILATION	45
Prescriptive HVAC: Variable Refrigerant Flow	46
DUCTLESS HEAT PUMP	48
PRESCRIPTIVE HVAC: MODULATING BURNER CONTROLS FOR BOILERS AND HEATERS, CODE AF1	50
Prescriptive HVAC: Boiler Stack Heat Exchanger (Boiler Economizer), Code AF2	51
Prescriptive HVAC: Boiler Reset/Lockout Controls, Code AF3	52
Prescriptive HVAC: Oxygen Trim for Boilers and Heaters, Code AF4	53
Prescriptive HVAC: Boiler Turbulator, Code AF5	54
Prescriptive HVAC: Programmable Thermostat, Code AF6	55
REFRIGERATION EQUIPMENT	56
Prescriptive Refrigeration: Evaporator Fan Motor Control for Cooler/Freezer, Code R10	57
Prescriptive Refrigeration: Door Heater Controls for Cooler/Freezer, Code R20	58
PRESCRIPTIVE REFRIGERATION: ZERO ENERGY DOORS FOR COOLERS/FREEZERS, CODE R30, R31	60
PRESCRIPTIVE REFRIGERATION: HIGH EFFICIENCY EVAPORATIVE FAN MOTORS, CODE R40, R41, R42	61
PRESCRIPTIVE REFRIGERATION: FLOATING-HEAD PRESSURE CONTROLS, CODE R50, R51, R52	63
PRESCRIPTIVE REFRIGERATION: DISCUS & SCROLL COMPRESSORS, CODE R60, R61, R62, R63, R70, R71, R72, R73, R74	65
PRESCRIPTIVE REFRIGERATION: ENERGY STAR® REACH-IN COOLERS AND FREEZERS, CODE R80	67
PRESCRIPTIVE REFRIGERATION: ENERGY STAR [®] COMMERCIAL ICE MAKERS, CODE R90	69
WATER HEATING EQUIPMENT	71
Prescriptive Water Heating: Tankless Water Heater, Code WH1	72
AGRICULTURAL EQUIPMENT	74

PRESCRIPTIVE AGRICULTURAL: NEW VAPOR-TIGHT HIGH PERFORMANCE T8 FLUORESCENT FIXTURES	75
PRESCRIPTIVE AGRICULTURAL: PLATE HEAT EXCHANGERS FOR MILK PROCESSING	76
PRESCRIPTIVE AGRICULTURAL: ADJUSTABLE SPEED DRIVES FOR DAIRY VACUUM PUMPS	77
Prescriptive Agricultural: Scroll Compressors	79
PRESCRIPTIVE AGRICULTURAL: ADJUSTABLE SPEED DRIVES ON VENTILATION FANS (POTATO STORAGE EQUIPMENT)	80
Prescriptive Agricultural: High Volume Low Speed Fans	82
GAS EQUIPMENT	83
Prescriptive Gas: Natural Gas Heating Equipment, Code G1-G16	
PRESCRIPTIVE GAS: ENERGY STAR® NATURAL GAS KITCHEN EQUIPMENT, CODE G17 - G22	87
COMPRESSED AIR EQUIPMENT	89
Prescriptive Compressed Air: High Efficiency Air Compressors, Codes C1-C4	90
Prescriptive Compressed Air: High Efficiency Dryers, Codes C10-C16	92
Prescriptive Compressed Air: Receivers, Codes C20-C27	93
PRESCRIPTIVE COMPRESSED AIR: LOW PRESSURE DROP FILTERS, CODES C30-C33	95
Prescriptive Compressed Air: Air-Entraining Nozzles, Code C40	96
CUSTOM INCENTIVES	98
Custom – Custom Electric Projects	
Custom – Custom Natural Gas Projects	
Custom – Custom Green House Gas Projects	101
APPENDIX A: GLOSSARY	104
APPENDIX B: ENERGY PERIOD FACTORS AND COINCIDENCE FACTORS	
APPENDIX C: CARBON DIOXIDE EMISSION FACTORS	113
APPENDIX D: LIGHTING INSTALLED AND BASELINE FIXTURE RATED WATTAGE TABLES AND BASELINE LIGHTING (LPD)	POWER DENSITY
APPENDIX E: PRESCRIPTIVE LIGHTING MEASURE COST	122
APPENDIX F: AVERAGE ANNUAL LIGHTING OPERATING HOURS AND OTHER LOOKUP TABLES	126
APPENDIX G: CUSTOM PROJECTS – PROCESS DOCUMENTATION	131

Introduction

PURPOSE

The Efficiency Maine Trust Residential/Retail, Commercial and Multifamily Technical Reference Manuals (TRMs) provide documentation for the Trust's calculation of energy and demand savings from energy efficiency measures. Each TRM serves as a central repository and common point of reference for the methods, formulas, assumptions and sources that are used to estimate savings from energy efficiency measures, and provides a common platform for analyzing energy savings across measures and programs. The importance of the TRM is derived from the importance of energy and demand savings calculations, which are at the foundation of the Trust's program planning and management, cost-effectiveness analysis, program evaluation, Annual Report and ISO-NE Forward Capacity Market participation.

GENERAL FORMAT

The TRM is organized by end use and then by measure category, where a measure category may include one or more measures. Each measure category is presented in its own section as a measure characterization, which follows a standard format. The measure characterization includes: a measure overview; energy and demand savings algorithms; baseline assumptions; deemed parameter values or instructions for inputs to savings algorithms, measure life and measure costs and impact factors for calculating adjusted gross savings and net savings. When there is a set of common values across measures, summary tables are provided at the end of the relevant section or in an appendix.

Where deemed savings values are specified, the Trust uses integer values when reporting in units of kWh, one decimal place when reporting in units of MMBtu, and three decimal places for all demand (kW) values.

GUIDANCE & COMMON ASSUMPTIONS

In using the Trust's TRMs, it is helpful to note the following:

- **Gross savings**: Algorithms are specified for *gross* savings. To calculate *adjusted gross* savings or *net* savings, impact factors that account verified measure performance (adjusted gross) and attribution (net) must be applied. The formulas used to calculate adjusted gross and net savings are described below.
- **Annual savings**: Algorithms are specified for *annual* savings. Unless otherwise noted, annual savings are assumed to be realized for each year of the measure life.
- **Unit savings**: Algorithms are specified for *per unit savings*. The Trust's program databases track and record the number of units delivered through the program.
- *Meter-level savings:* Savings are assumed to be the savings that occur at the customer's meter (or point of use for non-electric savings); line losses are not included in these calculations.
- **Non-Electric Savings:** When applicable, savings are counted for natural gas, oil, propane, kerosene, wood and/or water. The deemed unit savings, algorithms and assumptions for these non-electric impacts are described in the measure characterizations only for those measures for which those savings are counted. If a non-electric impact is not described for a measure, it can be assumed that no non-electric impacts are counted for that measure.
- In-Service Rate (ISR): The in-service rate represents the percentage of program units which are installed or implemented. Unless otherwise stated in the measure-specific sections in this TRM, the ISR is set to 100% for all commercial measures for the following reasons:

- Purchased units are assumed to be installed. In the commercial sector, it is uncommon for customers to purchase equipment and not immediately install or use it.
- The Trust's programs include some level of verification of the measure purchase and/or installation.
 These verification procedures ensure that projects and savings are counted only for measures which are implemented.
- The effects of non-implemented units may be identified in the program impact evaluation and accounted for in the energy and demand realization rates.
- For most commercial measures, it is common to assume ISR=100% or, equivalently, not include an ISR factor. For example, the 2013-2015 MA TRM assumes 100% in-service rate for all commercial measure except screw-in measures, stating that "All installations have 100% in service rate since all programs include verification of equipment installations." Many other TRMs, including NY, CT, and the Mid-Atlantic TRM do not include an in-service rate in savings equations for commercial measures.
- **Coincidence factors (CF)**: Coincidence factors are provided for the summer and winter on-peak periods as defined by the ISO-New England for the Forward Capacity Market ("FCM"), and are calculated consistently with the FCM methodology. Electric demand reduction during the ISO New England peak periods is defined as follows:
 - **Summer On-Peak**: average demand reduction from 1:00 to 5:00 PM on non-holiday weekdays in June, July, and August
 - Winter On-Peak: average demand reduction from 5:00 to 7:00 PM on non-holiday weekdays in December and January
- Life: Life refers to the effective useful life of the measure. It represents the equivalent number of years the savings are expected to be realized. Lifetime savings = annual savings * life. Measure life takes one or more of the following aspects into consideration: 1) projected equipment life, 2) documented equipment warranty, 3) measure persistence¹, and 4) savings persistence². Life is set to represent a conservative estimate of the aggregate life of all measures of that type installed and not the characterization of the life of a single, specific installed measure.
- **Deemed savings value vs. deemed savings algorithm**: For some measures, deemed savings values are provided representing the estimated average savings per unit for the measure. The deemed savings value may be based directly on the results from an evaluation or other research study, or may be based on a set of deemed input parameters applied to the stated energy and demand savings algorithms.
- For other measures, deemed values are provided for only some of the parameters in the algorithm and actual values for a given measure are required to calculate savings. In these cases, project-specific (or "Actual") data

¹ Measure persistence is a quantification of how long the measure will remain in place. Causes of reduced measure persistence include any activity that removes the measure or eliminates the savings such as equipment upgrade, refurbishment or renovation of the building, closure of a business, override of efficiency controls. ² Savings persistence is a quantification of how long the defined savings will remain. Causes of reduced savings persistence include a change to the baseline over the useful life of the measure so that future savings are less than first year savings and changes in usage behavior over time.

recorded in the relevant program tracking database is used in combination with the TRM deemed parameters to compute savings.

- **Project-specific ("Actual") data for Parameter Inputs**: The savings methods for most commercial measures specify "Actual" data for at least one of the input parameters. Actual data refers to values that are specific to the project. Unless otherwise stated, these actual project data should be collected and documented on the project application forms. For some measures, the TRM provides alternative values if the actual data is unknown.
- **Data Sources for Deemed Parameter Inputs**: Wherever possible, deemed parameter values and assumptions are based on Maine-specific research and data. When such data are not available, the TRM relies on relevant data sources from neighboring states and regions and when necessary data from other areas within the U.S. In some cases, engineering judgment and scaling for regional differences are used.
- **Project type**: The project type describes the underlying scenario that is assumed for the savings calculation of a given measure. The decision type has implications for the baseline efficiency case and the measure cost assumptions as shown below.³ For each energy efficiency measure, the TRM identifies the relevant project type, or types, corresponding to the scenarios in which the given measure may be implemented.

Decision Type	Scenario	Baseline	Measure Cost
New Construction	Customer is in the market to purchase new equipment for a new construction or new capacity project or as part of a planned renovation or to add controls to improve the performance of new equipment	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Replace on Burnout	Customer is in the market to purchase new equipment to replace existing equipment that has worn out or otherwise needs replacing	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Retrofit	Customer's existing equipment is in working order and has remaining useful life or is adding controls to improve the performance of operating equipment in an existing facility.	Existing equipment or conditions	Full measure cost: cost of the high-efficiency equipment (including installation)

• *Efficiency standards:* The TRM anticipates the effects of changes in efficiency standards for some measures, including shifts in the baseline for CFLs due to changes in Federal Standards for lighting products under the Energy Independence & Security Act of 2007 (EISA).

³ Table adapted from National Action Plan for Energy Efficiency (2008). Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers. Energy and Environmental Economics, Inc. and Regulatory Assistance Project. <<u>http://www.epa.gov/eeactionplan</u>>

• **TRM Updates**: The TRMs are reviewed and updated annually, or more frequently if needed, to reflect new information obtained through research and evaluation studies, changes in program offerings (measures) and shifts in technology and baselines. Annual updates to the TRM are published as a new version (Version YYYY.1) with a specific effective date. Inter-year updates are published as iterations to the version year (Version YYYY.x) with changes and effective date indicated.

SAVINGS FORMULAS

The formulas and inputs used to calculate the deemed gross annual energy ($\Delta kWh/yr$) and gross demand (ΔkW) savings for each measure are described in the measure sections. The formulas used to calculate adjusted gross savings, on-peak demand savings, and lifetime savings are described below:

Adjusted Gross Savings

Adjusted gross savings represent the total energy and demand savings achieved by measures implemented through the Trust's programs. The adjusted gross savings values are calculated by applying various evaluation parameters to the gross annual energy and demand savings:

Adjusted Gross Annual kWh = $\Delta kWh/yr \times ISR \times RR_{E}$

Adjusted Gross Lifetime kWh = Δ kWh/yr × ISR × RR_E × Measure Life

Adjusted Gross Annual MMBtu⁴ = Δ MMBtu/yr × ISR × RR_E

Adjusted Gross Lifetime MMBtu⁴ = Δ MMBtu/yr × ISR × RR_E × Measure Life

Adjusted Gross Summer On-Peak kW = $\Delta kW \times ISR \times RR_{D} \times CF_{S}$

Adjusted Gross Winter On-Peak kW = $\Delta kW \times ISR \times RR_{D} \times CF_{W}$

The Adjusted Gross Summer On-Peak kW value is equivalent to the Demand Reduction Value reported to the ISO-NE Forward Capacity Market.

Net Savings

Net Savings represent the total realized energy and demand savings that are attributable to the Trust's programs. These net savings are calculated by applying the net-to-gross (NTG) factors such as free-ridership and spillover to the adjusted gross savings.

Net Annual kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO)$

Net Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO) \times Measure Life$

Net Summer On-Peak kW = Δ kW × ISR × RR_D × CF_S × (1 – FR + SO)

⁴ In this document and other reporting documents, fossil fuel savings are reporting in unit of MMBtu. In the tracking data base (effRT), natural gas savings are calculated in units of therms and then must be converted to MMBtu.

Net Winter On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_W \times (1 - FR + SO)$

*The parameter (1 - FR + SO) may be replaced with the net-to-gross (NTG) ratio.

SAVINGS CALCULATIONS

The actual calculation of energy efficiency savings, pursuant to the algorithms and assumptions documented in the TRM, occurs in the Trust's program tracking databases. In 2012, the Trust initiated a significant effort to upgrade and transform its existing program-specific databases into a comprehensive, unified database system that supports multiple programs with standardized internal processes, features and quality. This initiative builds on the foundation of the successful Efficiency Maine Reporting and Tracking (effRT) database system that historically supported the Business Programs to create a new multi-program database system, effRT 2.0. As part of this effort, the Trust is mapping the TRM deemed values and algorithms into effRT, and establishing processes for updates to effRT to coincide with TRM updates.

As of January 1, 2014, the Trust added adjustment factors for the in-service rate (ISR) and the evaluated realization rate (RR) to the formulas used to calculate the demand reduction value (DRV) for Forward Capacity Market (FCM) monthly reporting. Results using these two additional factors are referred to as *Adjusted Gross Savings* in the effRT report.

TRM Change Log

Change Type	TRM Section	Description	Revision Date	
PY2014 Add	dendum			
Correction	Table 29 - Installed Fixture Rated Wattage Reduction Table (SAVEEE)	 Corrected the SAVE_{EE} values to show the average wattage reduction per fixture code. The previous values showed the fixture wattage rather than the wattage reduction. Added wattage savings values for new measure codes S51 and S61. 	11/12/2013	N/A
New	Prescriptive Lighting: Lighting Fixtures – Interior Spaces (New Construction)	 Added new fixture codes: Code S51 – LED Recessed Fixtures Code S61 – LED High/Low Bay Fixtures 	11/12/2013	Y
New	Prescriptive Lighting: Lighting Fixtures – Interior Spaces (Retrofit)	 Added new fixture codes: Code S50 – LED Recessed Fixtures Code S60 – LED High/Low Bay Fixtures 	11/12/2013	Y
New	Prescriptive Lighting: Lighting Fixtures – Refrigerated Spaces	 Added new fixture codes: Code S32 – LED Refrigerated Case Light – Horizontal (Retrofit) Code S33 – LED Refrigerated Case Light – Horizontal (New Construction) 	11/12/2013	Y
Revision	Table 28 - Installed Fixture Rated Wattage Table (WattsEE)	Added fixture wattage values for new measure codes S50, S51, S60, S61, S32 and S32	11/12/2013	Y
Revision	Table 32 – Measure Costs for Prescriptive Lighting	Added measure costs for new measure codes S50, S51, S60, and S61.	11/12/2013	Y
New	Prescriptive DHP Retrofit: Ductless Heat Pump Retrofit	Added two new measures:DHP Retrofit (Electric Heat Baseline)DHP Retrofit (Non-Electric Heat Baseline)	12/17/2013	Y
Revision	Table 26 – Commercial Coincidence Factors and Energy Period Factors	Added coincidence and energy period factors for the two new DHP Retrofit measures	12/17/2013	Y
Revision	Appendix G: Custom Projects – Process Documentation	Updated eligibility requirements to reflect a mid- year change announced in a January 30, 2013 program opportunity notice	2/25/2014	N/A
PY2015 Up	dates		-	
New	Multifamily Efficiency Program lighting measures	Added Multifamily Efficiency Program for retrofit lighting measures (superseded by subsequent modification)	7/1/2014	N/A
Revision	Prescriptive HVAC: Unitary Air-Conditioners	Updated baseline efficiency for Window AC units to reflect change to federal minimum efficiency standards	7/1/2014	N/A
Revision	Natural Gas Heating Equipment	Update baseline efficiency values based on new federal minimum efficiency requirements; updated measure costs	7/1/2014	Y
Other	Prescriptive Lighting: Lighting Controls – Interior Spaces	Revised description of savings calculation method to improve clarity; the change does not change the savings estimation approach	7/1/2014	N/A

Change	TRM Section	Description	Revision	effRT
Туре	TRM Section	Description	Date	update
Revision	Prescriptive HVAC: PTAC and PTHP	Updated baseline efficiency values	7/1/2014	N/A
New	Prescriptive HVAC: Ductless	Updated the existing Ductless Heat Pump Retrofit	7/1/2014	Υ
	Heat Pump Retrofit	measure to include multi-head option; updated		
		measure cost		
Other	Small Business Direct Install	The PY2014 Direct Install Pilot Program is changed to	7/1/2014	N/A
	Program	the Small Business Direct Install Program in PY2015.		
Revision	DHP Retrofit	Updated the formula to include an HSPF adjustment	7/1/2014	Y
		factor and updated the annual EFLH value based on		
		updates to the DHP workbook. Updates also		
Devision		Included CF and EPF values for this measure.	0/22/2014	V
Revision	HVAC: VRF	operation	9/23/2014	Ŷ
Povision	DHD Potrofit	Updated measure life	0/27/2014	v
Other	DHP Retrofit	Perceved qualifications table, revised measure cost	9/2//2014	T V
Other		for 4 zones to be 4 + zones	11/30/2014	T
Other	Introduction	Undated TRM Undate section Inter-year undates	11/30/2014	N
Other		will be released as iterations of the complete	11/30/2014	
		document.		
Other	Prescriptive Lighting:	Moved Multifamily lighting measures from	1/1/2015	N
	Lighting Fixtures –	Commercial TRM to Multifamily TRM		
	Multifamily (Retrofit),			
	Prescriptive Lighting:			
	Lighting Controls –			
	Multifamily			
Other	Prescriptive DHP	Removed Multifamily option. Included in	1/1/2015	Ν
		Multifamily TRM		
Other	Custom Electric, Custom	Removed Multifamily section. Included in	1/1/2015	N
	Natural Gas	Multifamily TRM. Custom Natural Gas criteria		
Other		updated.	2/4/2045	
Other	Custom Natural Gas	Modified minimum savings threshold	3/1/2015	N
New	Prescriptive HVAC	Added new measures: Boller Turbulator, Modulating	3/1/2015	Ŷ
		Surner Controis, Oxygen Trim Controis, Boller		
		Reset / ockout Controls		
New	Prescriptive Water Heating	Tankless Water Heater	3/1/2015	v
New	Prescriptive Lighting	Added new measure codes:	3/1/2015	v
NCW			5/1/2015	1
New	Prescriptive Lighting:	Added new fixture codes:	3/1/2015	Y
	Lighting Fixtures – Interior	 Code S81 – LED Linear Ambient Fixtures 		
	Spaces (New Construction)			
New	Prescriptive Lighting:	Added new fixture codes:	3/1/2015	Y
	Lighting Fixtures – Interior	Code S80 – LED Linear Ambient Fixtures		
	Spaces (Retrofit)			

Change Type	TRM Section	Description	Revision Date	effRT update
New	Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (New Construction)	Added new fixture codes: • Code S71 – LED StairwayFixtures	3/1/2015	Y
New	Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (Retrofit)	Added new fixture codes: • Code S70 – LED Stairway Fixtures	3/1/2015	Y
PY2016 Up	dates			
Revision	Lighting Equipment	Revised waste heat factors for cooling. Added waste heat factor for heating	7/1/2015	Y
Revision	Lighting Equipment	Revised sub-division for LED Flood/Spot and High/Low Bay fixtures.	7/1/2015	Y
Revision	Appendix E: Lighting Costs	Revised measure costs for lighting measures	7/1/2015	Y
Revision	Ductless Heat Pump	Changed decision type to Lost Opportunity. Revised parameters based on updated modeling.	7/1/2015	Y
Revision	Prescriptive HVAC	Updated measure cost for Unitary A/C, Heat Pump Systems, Oxygen Trim Controls	7/1/2015	Y
Revision	Prescriptive Refrigeration	Updated measure cost for R80, R90	7/1/2015	Y
Revision	Prescriptive Agriculture	Updated measure cost for vapor-tight high performance T8,	7/1/2015	Y
Revision	Prescriptive Agriculture	Adjustable Speed Drive savings calculation updated to reflect Variable Frequency Drive Evaluation Protocol	7/1/2015	Y
Revision	Prescriptive Natural Gas	Updated measure cost for natural gas heating equipment and natural gas kitchen equipment	7/1/2015	Y
Revision	Custom Incentives	Updated measure life for heating system replacement/upgrade and maintenance	7/1/2015	Y
Other	Appendix: Carbon Dioxide Emission Factors	Added carbon dioxide emission factors table	7/1/2015	N
Other	Lighting	Expanded Hospital entries to include all health care facilities	7/1/2015	Y
Other	Appendix: Average Annual Lighting Operating Hours and other Lookup Tables	Added annual operation hours reference for nursing homes/assisted living/health care and agriculture, added health care ventilation rates	7/1/2015	N
Other	Multiple	Updated kBtuh per kW conversion factor from 3.413 to 3.412	7/1/2015	Y
Revision	S11	New wattage sub-division added	7/1/2015	Υ

Correction: indicates a correction to an existing error in the previous TRM.

New: indicates a measure that was not included in the previous TRM

Revision: indicates a revision to the savings or costs of an existing measure

Other: indicates a change to an existing measure or existing text and that does not affect savings or cost calculation

Lighting Equipment

ORGANIZATION

Prescriptive lighting equipment is grouped into the following eight lighting groups:

- Lighting Fixtures Interior Spaces (New construction)
- Lighting Fixtures Interior Spaces (Retrofit)
- Lighting Fixtures with Integrated Controls Interior Spaces (New construction)
- Lighting Fixtures with Integrated Controls Interior Spaces (Retrofit)
- Lighting Fixtures LED Exit Signs
- Lighting Fixtures Exterior Spaces (New construction)
- Lighting Fixtures Exterior Spaces (Retrofit)
- Lighting Controls Interior Spaces
- Lighting Fixtures Refrigerated Spaces
- Lighting Controls Refrigerated Spaces

LIGHT MEASURE CODES

The list of eligible lighting products may change throughout the program year. For the most up to date table of eligible fixture types, see Business Program Lighting information available on the Efficiency Maine website: http://www.efficiencymaine.com/.

Prescriptive Lighting	z: Lighting Fixtures – Interior Spaces (New Construction), Code L16, L31, L33, L35, L41, S21,
S41, S51, S6	l, S81
Last Revised Date	7/1/2015
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of high-efficiency interior lighting fixtures
	instead of new standard efficiency fixtures.
Primary Energy	Electric
Impact	
Sector	Commercial/Industrial
Program(s)	Business Incentive Program
End-Use	Lighting
Project Type	New construction
GROSS ENERGY SAVIN	NGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	For new construction measures (except measure S41): ⁵
	$\Delta kW = (LPD_{BASE} \times Area - Qty_{EE} \times Watts_{EE}) / 1000 \times WHF_d$
	For measure S41: ⁵
	$\Delta kW = Qty_{EE} \times SAVE_{EE} / 1000 \times WHF_d$
Annual Energy	For new construction measures (except measure S41): 5
Savings	$\Delta kWh/yr$ = (LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1000 x HoursWk x Weeks x WHF _{e,cool}
	Δ MMBtu/yr = -(LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1000 x HoursWk x Weeks x WHF _{e,heat}
	For measure S41: ⁵
	$\Delta kWh/yr = Qty_{EE} \times SAVE_{EE} / 1000 \times HoursWk \times Weeks \times WHF_{e,cool}$
	Δ MMBtu/yr = -Qty _{EE} x SAVE _{EE} / 1000 x HoursWk x Weeks x WHF _{e,heat}
Definitions	Unit = Lighting fixture upgrade measure
	Qty _{EE} = Quantity of energy efficient fixtures
	Watts _{EE} = Watts of energy efficient fixture (based on the specified installed fixture type)
	(Watts)
	SAVE _{EE} = Average wattage reduction of fixture (based on the specified installed fixture type)
	(Watts)
	LPD _{BASE} = Baseline maximum lighting power density (LPD) for space type (Watts/ft ²)
	Area = Area of the building or space associated with the design LPD_{BASE} value (ft ²)
	HoursWk = Weekly hours of equipment operation (hrs/week)
	Weeks = Weeks per year of equipment operation (weeks/year)
	WHF _d = Waste heat factor for demand to account for cooling savings from efficient lighting
	WHF _{e,cool} = Waste heat factor for energy to account for cooling savings from efficient lighting
	WHF _{e,heat} = Waste heat factor for energy to account for increased heating load from efficient
	lighting
	1000 = Conversion: 1000 Watts per kW
EFFICIENCY ASSUMPT	
Baseline Efficiency	The baseline is represented by building code or standard design practice for the building or space
	type.
High Efficiency	High-efficiency lighting system that exceeds building code.

⁵ The LPD baseline approach is not used for measure code S41 Screw-In LED lamps since these fixtures are typically used for track or task lighting and exempted from the LPD approach. When measure S41 is used, the savings are based on average per fixture wattage reduction.

Prescriptive Lighting: Lighting Fixtures – Interior Spaces (New Construction), Code L16, L31, L33, L35, L41, S21, S41, S51, S61, S81

PARAMETER VALUES										
Measure/Type		Watts _{EE}	SAVE	SAVE _{EE} Are		Area LPD _{BASE}			WHF _{e,heat}	
New construction	Actual	Table 28 ⁶	Table 2	Table 29 ⁶ Actual		Table 29 ⁶ Actual Table 31 ⁶ 0.00		Actual Table 31 ⁶		0.00246 ⁸
Measure/Type	HoursWk	Weeks	WHF	F _d WHF _{e,cool}		WHF _{e,cool} Life (yrs)			Cost (\$)	
New construction	Actual ⁷	Actual	1.067	⁸ 1.198 ⁸		98 ⁸	15 ⁹		Table 32 ¹⁰	
IMPACT FACTORS										
Program	ISR	RR _E	RR _D	CFs		CFw	FR		SO	
Business Incentive	100%	99% ¹¹	101% ¹¹	¹¹ Table 26 ¹²		Table 26 ¹²	28% ¹³	3	0.4% ¹⁴	

⁶ See Appendix D. The fixture wattage and wattage reduction values are based on the specified fixture type. The baseline LPD is based on the specified space type. ⁷ Use actual hours when known. If hours are unknown, use the values from Table 33.

⁸ Analysis performed by Cadmus June 2015 based on 2015 NY TRM, Appendix D. HVAC Interactive Effects Multipliers.

⁹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report Prepared for The Massachusetts Life Study R

¹⁰ See Appendix E.

¹¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Values for prescriptive measures. ¹² See Appendix B.

¹³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

¹⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

L30.1, L32, L32.1, L35, L40, S20, S40, S50, S52,S60, S80 Last Revised Date 7/1/2015
Last Revised Date 7/1/2015
MEASURE OVERVIEW
Description This measure involves the purchase and installation of high-efficiency interior lighting fixtures to
replace existing operating lighting equipment (retrofit).
Primary Energy Electric
Impact
Sector Commercial/Industrial
Program(s) Business Incentive Program, Small Business Direct Install Program
End-Use Lighting
Project Type Retrofit
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)
Demand Savings $\Delta kW = (Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) / 1000 \times WHF_d$
Annual Energy $\Delta kWh/yr = (Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) / 1000 \times HoursWk \times Weeks \times WHF_{e,cool}$
Savings Δ MMBtu/yr = -(Qty _{BASE} x Watts _{BASE} – Qty _{EE} x Watts _{EE}) / 1000 x HoursWk x Weeks x WHF _{e,heat}
Definitions Unit = Lighting fixture upgrade measure
Qty _{BASE} = Quantity of baseline fixtures
Watts _{BASE} = Watts of baseline fixture (based on the specified existing fixture type) (Watts)
Qty _{EE} = Quantity of energy efficient fixtures
Watts _{EE} = Watts of energy efficient fixture (based on the specified installed fixture type)
(Watts)
HoursWk = Weekly hours of equipment operation (hrs/week)
Weeks = Weeks per year of equipment operation (weeks/year)
WHF _d = Waste heat factor for demand to account for cooling savings from efficient lighting
WHF _{e,cool} = Waste heat factor for energy to account for cooling savings from efficient lighting
WHF _{e,heat} = Waste heat factor for energy to account for increased heating load from efficient
lighting
1000 = Conversion: 1000 Watts per kW
EFFICIENCY ASSUMPTIONS
Baseline Efficiency The existing lighting system.
High Efficiency High-efficiency lighting system that exceeds building code.
PARAMETER VALUES
Weeks
Ivieasure/Type Qty _{BASE} Watts _{BASE} Qty _{EE} Watts _{EE} HoursWk ²⁰ Life (yrs) Cost (\$)
Potrofit Actual Table 20 ¹⁶ Actual Table 28 ¹⁶ Actual Actual 12 ¹⁷ Table 23 ¹
Measure/Type WHE WHE WHE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

¹⁵ Use actual hours when known. If hours are unknown, use the values from Table 33.

¹⁶ See Appendix D. The fixture wattages are based on the specified fixture types for baseline and installed fixtures.

¹⁷ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The

Massachusetts Joint Utilities, by ERS

¹⁸ See Appendix E.

Prescriptive Lighting: Lighting Fixtures – Interior Spaces (Retrofit), Code L10, L10.1, L15, L15.1, L20, L25, L30, L30.1, L32, L32.1, L35, L40, S20, S40, S50, S52,S60, S80

IMPACT FACTORS							
Program	ISR	RR _E	RR _D	CFs	CFw	FR	SO
Business Incentive	100%	99% ¹⁹	101% ¹⁹	Table 26 ²⁰	Table 26 ²⁰	28% ²¹	0.4% ²²
Direct Install	100%	100% ²³	100% ²³	Table 26 ²⁰	Table 26 ²⁰	0% ²⁴	0% ²⁴

¹⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

²⁰ See Appendix B.

²¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

²² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

²³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG because the market is small business.

Prescriptive Lighting	: Lighting Fixtures with Integrated Controls – Interior Spaces (New Construction), Code					
\$71						
Last Revised Date	7/1/2015					
MEASURE OVERVIEW						
Description	This measure involves the purchase and installation of LED stairway lighting fixtures instead of new standard efficiency fixtures (new construction). The fixtures must meet one of the following conditions: include integral controls, operate off of remote sensors where remote sensor is packaged together with the luminaire under a single model number, or be designed to operate off of remote sensors, where the luminaire and sensors are sold separately, but the luminaire has features enabling communication with a remote sensor. Controls must assure the luminaire reverts to lower-power. Jower-light output state when there are no occupants in the vicinity.					
Primary Energy	Electric					
Impact						
Sector	Commercial/Industrial					
Program(s)	Business Incentive Program					
End-Use	Lighting					
Project Type	New Construction					
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)					
Demand Savings	$\Delta kW = (WHF_d / 1000) \times ((LPD_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) + (Qty_{EE} \times Watts_{EE} \times ContOutRed \times (1-Occ)))$					
Annual Energy	$\Delta kWh/yr = (HoursWk x Wks x WHF_{e,cool} / 1000) x ((LPD_{BASE} x Area - Qty_{EE} x Watts_{EE}) + (Oty x Watts x ContOutBed x (1-Occ)))$					
Savings	$\Delta MARE + Marco = -(Hours)M(k + M/ks + M/HE) + (1000) + ((LDD) + Aroo = Other + $					
	Watts _{EE}) + ($Qty_{EE} \times Watts_{EE} \times ContOutRed \times (1-Occ)$))					
Definitions	Unit = Lighting fixture upgrade measure					
	Qty _{EE} = Quantity of energy efficient fixtures					
	Watts _{EE} = Watts of energy efficient fixture (based on the specified installed fixture type) (Watts)					
	SAVEEE = Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)					
	LPD _{BASE} = Baseline maximum lighting power density (LPD) for space type (Watts/ft2)					
	Area = Area of the building or space associated with the design LPD value (ft2)					
	HoursWk = Weekly hours of equipment operation (hrs/week)					
	Weeks = Weeks per year of equipment operation (weeks/year)					
	ContOutRed = % light output reduction sensor set point (must be minimum of 50%)					
	Occ = % occupancy for space (default to 10%)					
	WHF _d = Waste heat factor for demand to account for cooling savings from efficient lighting					
	WHF _{e,cool} = Waste heat factor for energy to account for cooling savings from efficient lighting					
	WHF _{e,heat} = Waste heat factor for energy to account for increased heating load from efficient lighting					
	1000 = Conversion: 1000 Watts per kW					
EFFICIENCY ASSUMPT	IONS					
Baseline Efficiency	The baseline is represented by building code or standard design practice for the building or space					
,	type.					
High Efficiency	High-efficiency lighting system that exceeds building code with controls that automatically control					
- /	the connected lighting systems.					

Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (New Construction), Code **S71 PARAMETER VALUES** HoursWk Measure/Type SAVE Life (yrs) Cost (\$) Qty_{EE} Watts_{EE} Area Weeks 25 Table 29¹⁶ Table 28¹⁶ 13²⁶ Table 32²⁷ Retrofit Actual Actual Actual Actual ContOutRe Measure/Type Occ WHF_d WHF_{e,cool} WHF_{e,heat} d 1.067^{8} 1.198^{8} 0.00246⁸ Actual Retrofit Actual **IMPACT FACTORS** Program ISR RR_{E} RR_{D} CF_S CF_W FR SO 101%¹⁹ Table 26²⁹ 28%³⁰ $0.4\%^{31}$ 99%²⁸ Table 26²⁰ 100% **Business Incentive**

²⁵ Use actual hours when known. If hours are unknown, use the values from Table 33.

²⁶ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS

²⁷ See Appendix E.

²⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

²⁹ See Appendix B.

³⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

³¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive Lighting	: Lighting Fixtures with Integrated Controls – Interior Spaces (Retrofit), Code S70						
Last Revised Date	7/1/2015						
MEASURE OVERVIEW							
Description	This measure involves the purchase and installation of LED stairway lighting fixtures to replace existing operating lighting equipment (retrofit). The fixtures must meet one of the following conditions: include integral controls, operate off of remote sensors where remote sensor is packaged together with the luminaire under a single model number, or be designed to operate off of remote sensors, where the luminaire and sensors are sold separately, but the luminaire has features enabling communication with a remote sensor. Controls must assure the luminaire reverts to lower-power. lower-light output state when there are no occupants in the vicinity.						
Primary Energy	Electric						
Sector	Commercial/Industrial						
Program(s)	Business Incentive Program Small Business Direct Install Program						
End-Use	Lighting						
Project Type	Retrofit						
GROSS ENERGY SAVIN	IGS ALGORITHMS (UNIT SAVINGS)						
Demand Savings	$\Delta kW = (WHF_d / 1000) \times ((Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) + (Qty_{EE} \times Watts_{EE} \times ContOutRed \times 1-Occ))$						
Annual Energy Savings	$\Delta kWh/yr = (HoursWk x Wks x WHF_{e,cool} / 1000) x ((Qty_{BASE} x Watts_{BASE} - Qty_{EE} x Watts_{EE}) + (Qty_{EE} x Watts_{EE} x ContOutRed x 1-Occ))$ $\Delta MMBtu/yr = -(HoursWk x Wks x WHF_{e,heat} / 1000) x ((Qty_{BASE} x Watts_{BASE} - Qty_{EE} x Watts_{EC}) + (Qty_{EE} x Watts_{EE} x ContQutRed x 1-Qcc))$						
Definitions	Unit= Lighting fixture upgrade measureQtyBASE= Quantity of baseline fixturesWattsBASE= Watts of baseline fixture (based on the specified existing fixture type) (Watts)QtyEE= Quantity of energy efficient fixturesWattsEE= Watts of energy efficient fixture (based on the specified installed fixture type) (Watts)HoursWk= Weekly hours of equipment operation (hrs/week)Weeks= Weeks per year of equipment operation (weeks/year)ContOutRed= % light output reduction sensor set point (must be minimum of 50%)Occ= % occupancy for space (default to 10%)WHFd= Waste heat factor for energy to account for cooling savings from efficient lightingWHF _{e,heat} = Waste heat factor for energy to account for increased heating load from efficient lighting1000= Conversion: 1000 Watts per kW						
EFFICIENCY ASSUMPT	IONS						
Baseline Efficiency	The existing lighting system.						
High Efficiency	High-efficiency lighting system that exceeds building code with controls that automatically control the connected lighting systems.						

Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (Retrofit), Code S70													
PARAMETER VALUES													
Measure/Type	Qty _{BASE}	W	/atts _{BASE}		Qty _{EE}	Wa	atts _{EE}	Hours	SWk ³²	Weel	(S	Life (yrs)	Cost (\$)
Retrofit	Actual	Та	ble 30 ³³	1	Actual	Tabl	e 28 ¹⁶	Act	ual	Actua	al	13 ³⁴	Table 32 ³⁵
Measure/Type	ContOutRe	d	Occ		WHF	d	WHF	e,cool	WH	e,heat			
Retrofit	Actual		Actual		1.067	7 ⁸	1.1	98 ⁸	0.00	246 ⁸			
IMPACT FACTORS													
Program	ISR		RR _E		RR)	C	Fs	C	Fw		FR	SO
Business Incentive	100%		99% ³⁶		101%	/19 D	Table	e 26 ³⁷	Table	e 26 ²⁰		28% ³⁸	0.4% ³⁹
Direct Install	100%		100%40		100%	²³	Table	e 26 ²⁰	Table	e 26 ²⁰		0%41	0% ²⁴

³² Use actual hours when known. If hours are unknown, use the values from Table 33.

³³ See Appendix D. The fixture wattages are based on the specified fixture types for baseline and installed fixtures.

³⁴ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS

³⁵ See Appendix E.

³⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

³⁷ See Appendix B.

³⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

³⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

⁴⁰ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁴¹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG because the market is small business.

Prescriptive Lighting: Lighting Fixtures – LED Exit Sign, Code X10														
Last Revised Date	7/1/2015													
MEASURE OVERVIEW														
Description	This meas	sure involves t	he purchas	e and i	installation	n of new L	ED exit sig	ns to replace	existing,					
	operating	g incandescent	or fluores	cent ex	tit signs (re	trofit).								
Primary Energy Impact	Electric													
Sector	Commerc	cial/ Industrial												
Program(s)	Business	usiness Incentive Program, Small Business Direct Install Program												
End-Use	Lighting	ighting												
Project Type	Retrofit	Retrofit												
GROSS ENERGY SAVIN	GS ALGORI	S ALGORITHMS (UNIT SAVINGS)												
Demand Savings	Δ kW	$\Delta kW = (Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE} / 1000) \times WHF_d$												
Annual Energy	∆kWh/yr	$kWh/yr = (Qty_{BASE} x Watts_{BASE} - Qty_{EE} x Watts_{EE} / 1000) x HoursYr x WHF_{e,cool}$												
Savings	∆MMBtu	$MMBtu/yr = -(Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE} / 1000) \times HoursYr \times WHF_{e,heat}$												
Definitions	Unit	= Exit sign u	ipgrade me	easure										
	Qty _{BASE}	Qty _{BASE} = Quantity of baseline fixtures												
	Qty _{EE}	Qty _{EE} = Quantity of installed fixtures												
	Watts _{BASE}	Watts _{BASE} = Watts of baseline fixture (based on the specified existing fixture type) (Watts)												
	Watts _{EE}	= Watts of I	Energy effic	cient fi	xture (base	ed on the s	specified in	nstalled fixtu	re type)					
		(Watts)												
	HoursYr	= Annual op	perating ho	urs (hr	rs/yr)									
	WHF _d	= Waste he	at factor fo	r dema	and to acco	ount for co	ooling savi	ngs from effi	cient lighting					
	WHF _{e,cool}	= Waste he	at factor fo	r ener	gy to accou	unt for coo	oling savin	gs from effici	ent lighting					
	WHF _{e,heat}	= Waste he	at factor fo	r ener	gy to accou	unt for inc	reased hea	ating load fro	m efficient					
		lighting												
	1000	= Conversio	on: 1000 W	atts pe	er kW									
Baseline	Existing in	candescent or fl	uorescent e	xit sign										
High Efficiency	Exit sign i	lluminated wit	h light emi	tting d	liodes (LED)								
PARAMETER VALUES														
Measure/Type	Qty _{BASE}	Watts _{BASE}	Qty _{EE}	W		Ho	ursYr	Life (yrs)	Cost (\$)					
Retrofit	Actual	Table 30 ²	Actual	Tat	ole 28**	8,7	760 ³	13**	Table 32 ⁺³					
Measure/Type	WHF _d WHF _{e,cool} WHF _{e,heat}													
Retrofit	1.067°	1.198°	0.00246											
IMPACT FACTORS								[
Program	ISR	RR _E	RF	R _D	CFs	47	CF _W	FR	SO					
Business Incentive	100%	99%**	101	% [™]	Table 26	Tab	le 26 [*]	28% ^{°°}	0.4%					
Direct Install	100% 100% ⁵⁰ 100% ⁵⁰ Table 26 ⁴⁷ Table 26 ⁴⁷ 0% ⁵¹ 0% ⁵¹													

⁴² See Appendix D. The fixture wattages are based on the specified fixture types for baseline and installed fixtures.

⁴⁷ See Appendix B.

⁴³ Exit signs operate continuously, so annual operating hours are 8,760 hours/year (24 hours/day * 365 days/year = 8,760 hours/year).

⁴⁴ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS

⁴⁵ See Appendix E.

⁴⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

⁴⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

⁴⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

⁵⁰ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

Image: Im	Prescriptive Lighting: Lighting Fixtures – Exterior Spaces (New construction), Code S11, S13, S15, S17, S23														
MEASURE OVERVIEW Description This measure involves the purchase and installation of high-efficiency exterior lighting fixtures instead of new standard efficiency lighting fixtures. Primary Energy Electric Impact Sector Commercial/Industrial Project Type New construction GROSS ENERGY SAVINCS ALGORITHMS (UNIT SAVINGS) Demand Savings For all measures (except measure \$15): ⁵⁷ AKW = cltPD _{bass} : x Area – Qtyre x Wattser) / 1000 Annual Energy For all measures (except measure \$15): ⁵⁷ AkW = cltPD _{bass} : x Area – Qtyre x Wattser) / 1000 x HoursWk x Weeks For measures \$15: ⁵⁷ AkWh/yr = CltPD _{bass} : x Area – Qtyre x Wattser) / 1000 x HoursWk x Weeks Definitions Unit = CltPD _{bases} x Area – Qtyre x Wattsers) / 1000 x HoursWk x Weeks Weats of Energy efficient fixture (based on the specified installed fixture type) (Watts) Savings AkWh or sof Energy efficient fixture (based on the specified installed fixture type) (Watts) Savings Savings Area of	Last Revised Date	7/1/201	13												
Description instead of new standard efficiency lighting fixtures. Primary Energy linpact Electric Sector Commercial/Industrial Program(5) Business incentive Program End-Use Lighting Project Type New construction GROSS ENERGY SAVINCES Sector Demand Savings For all measures (except measure \$15): ⁵² AkW = Ctype_x SAVEte_t / 1000 For measures (except measure \$15): ⁵² AkW = (LPD _{lasse} X Area – Ctyrex X Wattset) / 1000 Savings For measures \$15: ⁵² AkW/yr = (LPD _{lasse} X Area – Ctyrex X Wattset) / 1000 × HoursWk X Weeks Savings AkWh/yr = (LPD _{lasse} X Area – Ctyrex V Wattset) / 1000 × HoursWk X Weeks Savings AkWh/yr = (LPD _{lasse} X Area – Ctyrex Wattset) / 1000 × HoursWk X Weeks Verge Gaunity of installed fixture upgrade measure Interverse Verge Cuantity of installed fixture (based on the specified installed fixture type) (Watts): Verge = Area of the building or space associated with the design IDP _{lasse} value (ft ²) AkWh/yr = Lighting fixture upgrade measure IUPD _{lasse} value (ft ²) Verge = Area of the building or space as	MEASURE OVERVIEW														
$\begin{tabular}{ c c c c } \hline Instead of new standard efficiency lighting fixtures. Under the standard efficiency lighting fixture lighting. Under the standard efficiency lighting fixtures. Under the standard efficiency lighting fixture lighting. Under the standard efficiency lighting. Under the standard efficiency lighting fixture lighting fixtures. Under the standard efficiency lighting fixture lighting fixtures. Under the standard efficiency lighting. Under the standard efficiency lighting fixture lig$	Description	This me	asure invol	ves the purc	hase and	installation	of high-effic	iency ext	erior lighti	ng fixtures					
Primary Energy ImpactElectricSectorCommercial/IndustrialProgram(s)Business Incentive ProgramEnd-UseLightingProjet TypeNew constructionGROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)Demand SavingsFor all measures (except measure 515): 5^2 AkW = Qtyre x SAVEre / 1000For measures (except measure 515): 5^{27} AkW = (LPD _{BASE} Area - Qtyre x Wattsre) / 1000Annual EnergyFor all measures (except measure 515): 5^{27} AkW = Qtyre x SAVEre / 1000 x HoursWk x WeeksFor measure 515: 5^{27} AkW = Qtyre x SAVEre / 1000 x HoursWk x WeeksFor measure 515: 5^{27} $AkWh/yr$ = Qtyre to yre		instead	of new star	ndard efficie	ncy lighti	ng fixtures.									
$\begin{tabular}{ c c c c c c c } \hline c c c c c c c c c c c c c c c c c c $	Primary Energy	Electric													
SectorCommercial/IndustrialProgram(s)Business Incentive ProgramBrnd-UseLightingProject TypeNew constructionGROSS ENERGY SAVINESS LIGORITHMS (UNIT SAVINGS)GROSS ENERGY SAVINESS LIGORITHMS (UNIT SAVINGS)Demand SavingsFor all measures (except measure 515): 5? ΔkW = $Ctytet$ X SAVE _{EE} / 1000Annual EnergyFor all measures (except measure 515): 5? ΔkW = $Ctytet$ X SAVE _{EE} / 1000 x HoursWk x WeeksFor measure 515: 5? $\Delta kWh/yr$ = $Ctytet$ X SAVE _{EE} / 1000 x HoursWk x WeeksFor measure 515: 5? $\Delta kWh/yr$ = $Ctytet$ x SAVE _{EE} / 1000 x HoursWk x WeeksDefinitionsUnit= Lighting fixture upgrade measure $Ctytet$ = $Cuuantity of installed fixturesWattsEE= Watts of Energy efficient fixture (based on the specified installed fixture type)(Watts)LPD_{BASE}= Aeverage wattage reduction of fixture (based on the specified installed fixture type)(Watts)LPD_{BASE}= Baseline maximum lighting power density (LPD) for space type (Watts/ft2)AreaLPD_{BASE}= Baseline maximum lighting power density (LPD) for space type (Watts/ft2)HoursWLPD_{BASE}= Weekly hours of equipment operation (mexk/year)HoursWUD0= Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTIONSHigh efficiencyHigh-efficiencyHigh efficiencyHigh efficiency lighting system that exceeds building code.PARAMETER VALUES$	Impact														
Program(s)Business Incentive ProgramEnd-UseLightingProject TypeNew constructionGROSS ENERGY SAVINES ALGORITHMS (UNIT SAVINGS)Demand SavingsFor all measures (except measure 515): 52AkW= Ctyper x SAVEge / 1000For measure 515: 52AkW= (LPD_BASE x Area – Ctyge x WattSge) / 1000Annual EnergyFor all measures (except measure 515): 52SavingsAkWh/yrAkWh/yr= Ctyper x SAVEge / 1000 x HoursWk x WeeksFor measure 515: 52AkWh/yr= Ctyper x SAVEge / 1000 x HoursWk x WeeksFor measure 515: 52AkWh/yr= Ctyper x SAVEge / 1000 x HoursWk x WeeksDefinitionsUnitUnit= Lighting fixture upgrade measureCtyper= Quantity of installed fixturesWattsge= Watts of Energy efficient fixture (based on the specified installed fixture type) (Watts)SAVEge= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD_BASE= Baseline maximum lighting power density (LPD) for space type (Watts/t ²) AreaArea= Area of the building or space associated with the design LPD_BASE value (ft ²) HoursWHigh efficiencyBuilding code or standard design practice for the building or space type.High EfficiencyBuilding system that exceeds building code.PRAMETER VALUESSAVEgeSAVEgeMeasure/TypeQtygeSAVEgeMeasure/TypeQtygeSAVEgeAkWh/yr= Caversion: 1000 Watts per	Sector	Comme	rcial/Indust	trial											
End-UseLightingProject TypeNew constructionGROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)Demand SavingsFor all measures (except measure \$15): 5^{52} AkW= Qtyret x SAVEret / 1000For measures $515: 5^{52}$ AkW= (LPD _{BASE} x Area - Qtyret x Wattsret) / 1000Annual EnergyFor all measures (except measure \$15): 5^{52} SavingsAkWh/yr= Qtyret x SAVEret / 1000 x HoursWk x WeeksFor measure \$15: 5^{52} AkWh/yr= (LPD _{BASE} x Area - Qtyret x Wattsret) / 1000 x HoursWk x WeeksDefinitionsUnitElighting fixture upgrade measureQtyret= Quantity of installed fixture to based on the specified installed fixture type) (Watts)(Watts)SAVEretAverage wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD _{BASE} = Baseline maximum lighting power density (LPD) for space type (Watts/ft ²)Area of the building or space associated with the design LPD _{BASE} value (ft ²)HoursWkWeeks weeks per year of equipment operation (mes/syear)IDDOEFFICIENCY ASSUMETHERWeeks per year of equipment operation (mes/sylear)IDDOA Verage wattage reduction of the building or space type. <th c<="" td=""><td>Program(s)</td><td>Busines</td><td>s Incentive</td><td>Program</td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Program(s)</td> <td>Busines</td> <td>s Incentive</td> <td>Program</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Program(s)	Busines	s Incentive	Program										
$ \begin{array}{ c c c c c } \hline Project Type & New construction \\ \hline \begin{tabular}{ c c c c } \hline Project Type & SALGORIT-IMS (UNIT SAVINGS) \\ \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	End-Use	Lighting	ighting												
GROSS ENERGY SAVINES LUNIT SAVINGS) Demand Savings For all measures (except measure \$15): ⁵² AkW e Qty _{EE} x SAVE _{EE} / 1000 For measure \$15: ⁵² AkW e (LPD _{BASE} X Area – Qty _{EE} X Watts _{EE}) / 1000 Annual Energy For all measures (except measure \$15): ⁵² AkW e (LPD _{BASE} X Area – Qty _{EE} X Watts _{EE}) / 1000 × HoursWk x Weeks Savings AkWh/yr e Qty _{EE} x SAVE _{EE} / 1000 x HoursWk x Weeks For measure \$15: ⁵² AkWh/yr e Qty _{EE} x SAVE _{EE} / 1000 x HoursWk x Weeks For measure \$15: ⁵² AkWh/yr e Qty _{EE} x SAVE _{EE} / 1000 x HoursWk x Weeks Definitions Unit = (LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1000 x HoursWk x Weeks Veeks Veeks Veete Quantity of installed fixture Quantity of installed fixture Quantity of installed fixture Quantity of installed fixture (based on the specified installed fixture type) (Watts) SAVE _{EE} Average wattage reduction of fixture (based on the specified installed fixture type) (Watts) Veeks	Project Type	New co	nstruction												
Demand SavingsFor all measures (except measure \$15): 5^{22} ΔkW = Qty _{EE} x SAVE _{EE} / 1000For measure \$15: 5^{22} ΔkW = (LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1000Annual EnergyFor all measures (except measure \$15): 5^{22} $\Delta kWh/yr$ = Qty _{EE} x SAVE _{EE} / 1000 x HoursWk x WeeksFor measure \$15: 5^{2} $\Delta kWh/yr$ = Qty _{EE} x SAVE _{EE} / 1000 x HoursWk x WeeksDefinitionsUnitUnit= Lighting fixture upgrade measureQty _{FE} = Quantity of installed fixturesWatts _{EE} = Watts of Energy efficient fixture (based on the specified installed fixture type) (Watts)SAVE _{EE} = Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD _{BASE} = Baseline maximum lighting power density (LPD) for space type (Watts/ft ²) AreaArea= Area of the building or space associated with the design LPD _{BASE} value (ft ²) HoursWHigh-EfficiencyBaseline Efficiency lighting system that exceeds building code. EFFICIENCY ASSUMPTIONS EFFICIENCY ASSUMPTIONEBaseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyHigh-efficiency lighting system that exceeds building code.PARAMETER VALUESMeasure/TypeQty _{EE} SAVE _{EE} AreaLPD _{BASE} SAVE _{EE} AreaLPD _{BASE} Measure/TypeQty _{EE} SAVE _{EE} AreaLPD _{BASE} Measure/TypeQty _{EE} SAVE _{EE} Area<	GROSS ENERGY SAVIN	GS ALGO	S ALGORITHMS (UNIT SAVINGS)												
$ \begin{array}{c c c c c c } & \Delta kW & = \operatorname{Qty}_{EE} \ x \ SAVE_{EE} \ / \ 1000 \\ \hline For \ measure \ S15:^{52} \\ & \Delta kW & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ \operatorname{Qty}_{EE} \ x \ Watts_{EE} \ / \ 1000 \\ \hline Annual \ Energy \\ For \ all \ measures \ (except \ measure \ S15):^{52} \\ & \Delta kWh/yr & = \operatorname{Qty}_{EE} \ x \ SAVE_{EE} \ / \ 1000 \ x \ HoursWk \ x \ Weeks \\ \hline For \ measure \ S15:^{52} \\ & \Delta kWh/yr & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ Qty_{EE} \ x \ Watts_{EE} \ / \ 1000 \ x \ HoursWk \ x \ Weeks \\ \hline For \ measure \ S15:^{52} \\ & \Delta kWh/yr & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ Qty_{EE} \ x \ Watts_{EE} \ / \ 1000 \ x \ HoursWk \ x \ Weeks \\ \hline For \ measure \ S15:^{52} \\ & \Delta kWh/yr & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ Qty_{EE} \ x \ Watts_{EE} \ / \ 1000 \ x \ HoursWk \ x \ Weeks \\ \hline For \ measure \ S15:^{52} \\ & \Delta kWh/yr & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ Qty_{EE} \ x \ Watts_{EE} \ / \ 1000 \ x \ HoursWk \ x \ Weeks \\ \hline For \ measure \ S15:^{52} \\ & \Delta kWh/yr & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ Qty_{EE} \ x \ Watts_{EE} \ / \ 1000 \ x \ HoursWk \ x \ Weeks \\ \hline For \ measure \ S15:^{52} \\ & \Delta kWh/yr & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ Qty_{EE} \ x \ Watts_{EE} \ / \ 1000 \ x \ HoursWk \ x \ Weeks \\ \hline For \ measure \ S15:^{52} \\ & AkWh/yr & = (\operatorname{LPD}_{BASE} \ x \ Area \ - \ Qty_{EE} \ x \ Watts_{EE} \ & \ SAVE_{EE} \ & = \operatorname{Paread \ HoursWk \ S15:} \ & \ SAVE_{EE} \ & = \operatorname{Paread \ HoursWl \ S15:} \ & \ SAVE_{EE} \ & = \operatorname{Paread \ S15:} \ & \ SAVE_{EE} \ & = \operatorname{Paread \ HoursWl \ S15:} \ & \ SAVE_{EE} \ & = \operatorname{Paread \ HoursWl \ S15:} \ & \ SAVE_{EE} \$	Demand Savings	For all m	or all measures (except measure \$15): ⁵²												
$ \begin{array}{ c c c c c } For measure $15:^{52} \\ \hline \Delta kW &= (LPD_{BASE} x Area - Qty_{EE} x Watts_{EE}) / 1000 \\ \hline Annual Energy \\ Savings \\ \Delta kWh/yr &= Oty_{EE} x SAVE_{EE} / 1000 x HoursWk x Weeks \\ \hline For measures (except measure $15):^{52} \\ \hline \Delta kWh/yr &= (LPD_{BASE} x Area - Qty_{EE} x Watts_{EE}) / 1000 x HoursWk x Weeks \\ \hline For measures $15: \frac{52}{2} \\ \hline \Delta kWh/yr &= (LPD_{BASE} x Area - Qty_{EE} x Watts_{EE}) / 1000 x HoursWk x Weeks \\ \hline Definitions \\ Unit &= Lighting fixture upgrade measure \\ Qty_{EE} &= Quantity of installed fixtures \\ Watts_{EE} &= Watts of Energy efficient fixture (based on the specified installed fixture type) \\ (Watts) \\ SAVE_{EE} &= Average wattage reduction of fixture (based on the specified installed fixture type) \\ (Watts) \\ SAVE_{EE} &= Average wattage reduction of fixture (based on the specified installed fixture type) \\ (Watts) \\ LPD_{BASE} &= Baseline maximum lighting power density (LPD) for space type (Watts/ft2) \\ Area &= Area of the building or space associated with the design LPD_{BASE} value (ft2) \\ HoursW &= Weekly hours of equipment operation (hrs/week) \\ Weeks &= Weeks per year of equipment operation (weeks/year) \\ 1000 &= Conversion: 1000 watts per kW \\ \hline EFFICIENCY ASSUMPTOW \\ \hline EFFICIENCY ASSUMPTOWS \\ \hline Measure/Type & Qty_{EE} & Vatts_{EE} & SAVE_{EE} & Area & LPD_{BASE} & MoursWk & S \\ \hline Measure/Type & Qty_{EE} & Watts_{EE} & SAVE_{EE} & Area & LPD_{BASE} & Usel & Si & (yrs) \\ \hline New construction & Actual & Table \\ 28^{54} & Table 29^{54} & Actual & Table \\ 28^{54} & Actual & Actual & Actual & 15^{56} & Table 32^{57} \\ \hline \end{array}$		ΔkW	= Qty _E	_e x SAVE _{ee} / 1	1000										
For measure \$15: ⁵² AkW= (LPD_BASE x Area – QtyEE x WattsEE) / 1000Annual EnergyFor all measures (except measure \$15): ⁵² Savings $\Delta kWh/yr$ = QtyEE x SAVEE / 1000 x HoursWk x WeeksFor measure \$15: ⁵² $\Delta kWh/yr$ = (LPD_BASE x Area – QtyEE x WattSEE) / 1000 x HoursWk x WeeksDefinitionsUnit= Lighting fixture upgrade measureQtyEE= Quantity of installed fixturesWattsEE= Quantity of Energy efficient fixture (based on the specified installed fixture type) (Watts)SAVEEE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD_BASE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD_BASE= Area of the building or space associated with the design LPD_BASE value (ft ²)HoursW= Weeks per year of equipment operation (hrs/week) WeeksWeeks= Weeks per vear of equipment operation (weeks/year) 1000High EfficiencyHigh-efficiency lighting system that exceeds building code.PARAMETER VALUESMeasure/TypeQtyEESAVEE 28 ⁵⁴ AreaLPD_BASEArea 4LPD_BASE 4Measure/TypeQtyEESAVEE 28 ⁵⁴ Area 4AreaLPD_BASEArea 4LPD_BASE 4Measure/TypeQtyEESAVEE 28 ⁵⁴ Area 4LPD_BASE 4AreaL28 ⁵⁴ Table 29 ⁵⁴ ActualActualActualAreaLable 31 ⁵⁵ ActualActualActu			53												
		For mea	sure \$15:52												
Annual Energy SavingsFor all measures (except measure \$15): $\frac{52}{2}$ AkWh/yr= Qty _{EE} x SAVE _{EE} / 1000 x HoursWk x WeeksFor measure \$15: $\frac{52}{2}$ AkWh/yr= (LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1000 x HoursWk x WeeksDefinitionsUnit= Lighting fixture upgrade measure Qty _{EE} Qty _{EE} = Quantity of installed fixturesWatts_EE= Watts of Energy efficient fixture (based on the specified installed fixture type) (Watts)SAVE_EE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD_BASE= Baseline maximum lighting power density (LPD) for space type (Watts/t ²) AreaArea= Area of the building or space associated with the design LPD_BASE value (ft ²) HoursWHoursW= Weekly hours of equipment operation (hrs/week)Weeks= Weeks per year of equipment operation (hrs/week)EFFICIENCY ASSUMPTSave_rome that exceeds building or space type.High EfficiencyHigh-efficiency lighting system that exceeds building code.PARAMETER VALUESSAVE_EEAreaMeasure/TypeQty _{EE} SAVE_EEAreaLPD_BASEActualTable 28^{54} Table 29^{54} ActualTable 31^{55} ActualActual15 ⁵⁶ Table 32^{57}		Δ kW	$\Delta kW = (LPD_{BASE} \times Area - Qty_{EE} \times Watts_{EE}) / 1000$												
Savings $\Delta k Wh/yr= Qty_{EE} x SAVE_{EE} / 1000 x HoursWk x WeeksFor measure S15: 52\Delta k Wh/yr= (LPD_{BASE} x Area – Qty_{EE} x Watts_{EE}) / 1000 x HoursWk x WeeksDefinitionsUnit= Lighting fixture upgrade measureQtyree= Quantity of installed fixturesWatts_{EE}= Watts of Energy efficient fixture (based on the specified installed fixture type)(Watts)SAVE_{EE}= Average wattage reduction of fixture (based on the specified installed fixture type)(Watts)LPD_BASE= Baseline maximum lighting power density (LPD) for space type (Watts/ft²)AreaArea= Area of the building or space associated with the design LPD_BASE value (ft²)HoursWWeeks= Weekly hours of equipment operation (hrs/week)WeeksWeeks= Weekly hours of equipment operation (weeks/year)10001000= Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTIONEHigh EfficiencyHigh EfficiencyHigh EfficiencyMeasure/TypeQtyreeSAVE_EESAVE_EAreaSAVE_EEAreaArea(LPD_BASEHeasure/TypeQtyree(Qtyree)SAVE_EE(Yrs)AreaSAVE_EE(Yrs)Area(Yrs)Measure/TypeQtyree(2854Area(2854)New constructionActualTable(2854)AreaTable 2854ActualTable(3155)ActualTable(2854)ActualTable(3155)ActualTable(2854)Table 2954Actual$	Annual Energy	For all n	neasures (ex	kcept measu	re S15): ⁵	2									
$ \begin{array}{ c c c c c } For measure $15:^{52} \\ \hline \Delta k Wh/yr & = (LPD_{BASE} \times Area - Qty_{EE} \times Watts_{EE}) / 1000 \times HoursWk \times Weeks \\ \hline \Delta k Wh/yr & = (LPD_{BASE} \times Area - Qty_{EE} \times Watts_{EE}) / 1000 \times HoursWk \times Weeks \\ \hline Definitions & Unit & = Lighting fixture upgrade measure \\ Qty_{EE} & = Quantity of installed fixtures \\ Watts_{EE} & = Watts of Energy efficient fixture (based on the specified installed fixture type) \\ & (Watts) \\ SAVE_{EE} & = Average wattage reduction of fixture (based on the specified installed fixture type) \\ & (Watts) \\ LPD_{BASE} & = Baseline maximum lighting power density (LPD) for space type (Watts/ft2) \\ Area & = Area of the building or space associated with the design LPD_{BASE} value (ft2) \\ HOURSW & = Weekly hours of equipment operation (hrs/week) \\ Weeks & = Weeks per year of equipment operation (weeks/year) \\ 1000 & = Conversion: 1000 Watts per kW \\ \hline EFFICIENCY ASSUMPTIONE \\ \hline EFFICIENCY ASSUMPTIONE \\ \hline Baseline Efficiency \\ High-efficiency \\ High-efficiency \\ High-efficiency \\ Idding code or standard design practice for the building or space type. \\ \hline High Efficiency \\ High-efficiency \\ \hline Measure/Type \\ \hline Qty_{EE} \\ \hline Measure/Type \\ Qty_{EE} \\ \hline Measure/Type \\ Area \\ 28^{54} \\ \hline Table 29^{54} \\ Actual \\ \hline Table \\ 31^{55} \\ Actual \\ Actual \\ \hline Actual \\ 15^{56} \\ \hline Table 32^{57} \\ \hline \end{array}$	Savings	∆kWh/y	r = Qty _{El}	_E x SAVE _{EE} / 1	1000 x Ho	oursWk x We	eeks								
For measure \$15: 22 $\Delta kWh/yr$ = (LPD_BASE x Area – QtyEE x WattsEE) / 1000 x HoursWk x WeeksDefinitionsUnit= Lighting fixture upgrade measure $QtyEE$ = Quantity of installed fixturesWattsEE= Watts of Energy efficient fixture (based on the specified installed fixture type) (Watts)SAVEEE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPDBASE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPDBASE= Baseline maximum lighting power density (LPD) for space type (Watts/ft²) AreaArea= Area of the building or space associated with the design LPDBASE value (ft²) HoursWHoursW= Weekly hours of equipment operation (hrs/week) WeeksWeeks= Weeks per year of equipment operation (weeks/year) 10001000= Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTIONSBaseline Efficiency Building code or standard design practice for the building or space type.High EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyKattsEESAVEEEMeasure/TypeQtyEESAVEEEMeasure/TypeQtyEESAVEEEActualTable 28 ⁵⁴ New constructionActualTable 28 ⁵⁴ ActualTable 31 ⁵⁵ ActualActual15 ⁵⁶ Table 29 ⁵⁴			53												
$ \begin{array}{c c c c c c } \hline \mbox{AkWh/yr} & = (LPD_{BASE} \times Area - Qty_{EE} \times Watts_{EE}) / 1000 \times HoursWk \times Weeks \\ \hline \mbox{AkWh/yr} & = Lighting fixture upgrade measure \\ Qty_{EE} & = Quantity of installed fixtures \\ \hline \mbox{AkWts}_{EE} & = Quantity of installed fixture (based on the specified installed fixture type) (Watts_{EE} & Watts of Energy efficient fixture (based on the specified installed fixture type) (Watts) \\ \hline \mbox{AkWts} & Veeks & Veeks event age vattage reduction of fixture (based on the specified installed fixture type) (Watts) \\ \hline \mbox{AkWts} & Veeks & Veeks event age vattage reduction of fixture (based on the specified installed fixture type) (Watts) \\ \hline \mbox{AkWts} & Veeks & Veeks event age vattage reduction of fixture (based on the specified installed fixture type) (Watts/ft^2) \\ \hline \mbox{Area} & = Area of the building or space associated with the design LPD_{BASE} value (ft^2) \\ \hline \mbox{Area} & = Area of the building or space associated with the design LPD_{BASE} value (ft^2) \\ \hline \mbox{Area} & Veeks per year of equipment operation (hrs/week) \\ \hline \mbox{Weeks} & = Weeks per year of equipment operation (weeks/year) \\ \hline \mbox{Area} & Conversion: 1000 & Watts per kW \\ \hline \mbox{EFFICIENCY ASSUMPTIONS} \\ \hline \mbox{Baseline Efficiency} Building code or standard design practice for the building or space type. \\ \hline \mbox{Alghefficiency} High-efficiency lighting system that exceeds building code. \\ \hline \mbox{PARAMETER VALUES} \\ \hline \mbox{Area} & Area & Area & Area & Area & LPD_{BASE} & Meas & Life (yrs) & Cost ($$) \\ \hline \mbox{Area} & Table 28^{54} & Table 29^{54} & Actual & Table \\ \hline \mbox{Area} & Arcual & Actual & 15^{56} & Table 32^{57} \\ \hline \mbox{Area} & Actual & Actual & 15^{56} & Table 32^{57} \\ \hline \mbox{Area} & Actual & Actual & Actual & Actual & 15^{56} & Table 32^{57} \\ \hline \mbox{Area} & Actual & Actual & Actual & Actual & 15^{56} & Table 32^{57} \\ \hline \mbox{Area} & Actual & Actual & Actual & Actual & 15^{56} & Table 32^{57} \\ \hline \mbox{Area} & Actual & Actual & Actual & 15^{56} & Table 32^{57} \\ \hline \mbox{Area} &$		For mea	sure S15: ⁵²												
DefinitionsUnit= Lighting fixture upgrade measureQty= Quantity of installed fixturesWatts= Quantity of installed fixturesWatts= Watts of Energy efficient fixture (based on the specified installed fixture type) (Watts)SAVE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD= Baseline maximum lighting power density (LPD) for space type (Watts/ft²)Area= Area of the building or space associated with the design LPDHoursW= Weekly hours of equipment operation (hrs/week)Weeks= Weeks per year of equipment operation (hrs/week)Weeks= Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTIONSEBaseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyHigh-efficiency lighting system that exceeds building or space type.PARAMETER VALUESSAVE sMeasure/TypeQty 2RESAVE 28 ⁵⁴ New constructionActualTable 28 ⁵⁴ ActualTable 28 ⁵⁴ ActualTable 28 ⁵⁴ Table 29 ⁵⁴ ActualActualActual15 ⁵⁶ Table 28 ⁵⁴		∆kWh/y	r = (LPD	_{BASE} x Area –	Qty _{EE} x W	Vatts _{EE}) / 100	00 x HoursW	'k x Week	S						
Qty _{EE} = Quantity of installed fixturesWatts E= Watts of Energy efficient fixture (based on the specified installed fixture type) (Watts)SAVE EE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD BASE= Baseline maximum lighting power density (LPD) for space type (Watts/ft²) AreaArea= Area of the building or space associated with the design LPD BASE value (ft²) HoursWHoursW= Weekly hours of equipment operation (hrs/week) WeeksWeeks= Weeks per year of equipment operation (weeks/year) 10001000= Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTIONSBaseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyIgh-efficiency lighting system that exceeds building code.PARAMETER VALUESMeasure/TypeQty _{EE} SAVE 2S4New constructionActualTable 28 ⁵⁴ New constructionActualTable 28 ⁵⁴ ActualTable 28 ⁵⁴ ActualTable 28 ⁵⁴ Table 29 ⁵⁴ ActualActual15 ⁵⁶ Table 32 ⁵⁷	Definitions	Unit	= Lightin	g fixture up	grade me	asure									
$ \begin{array}{c c c c c c } Watts_{EE} & = Watts of Energy efficient fixture (based on the specified installed fixture type) \\ (Watts) \\ SAVE_{EE} & = Average wattage reduction of fixture (based on the specified installed fixture type) \\ (Watts) \\ LPD_{BASE} & = Baseline maximum lighting power density (LPD) for space type (Watts/ft2) \\ Area & = Area of the building or space associated with the design LPD_{BASE} value (ft2) \\ HoursW & = Weekly hours of equipment operation (hrs/week) \\ Weeks & = Weeks per year of equipment operation (weeks/year) \\ 1000 & = Conversion: 1000 Watts per kW \\ \hline \end{tabular} $		Qty _{EE}	= Quanti	ty of installe	ed fixture	S									
SAVE EE= Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)LPD BASE= Baseline maximum lighting power density (LPD) for space type (Watts/ft²) Area= Area of the building or space associated with the design LPD BASE value (ft²) HoursWHoursW= Weekly hours of equipment operation (hrs/week) Weeks= Weekly hours of equipment operation (hrs/week) Weeks1000= Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTOVEBaseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyHigh-efficiency lighting system that exceeds building code.PARAMETER VALUESVattsEESAVE SAVEMeasure/TypeQtyEEWattsEENew constructionActualTable 28 ⁵⁴ Table 28 ⁵⁴ Table 29 ⁵⁴ ActualTable 28 ⁵⁴ Table 29 ⁵⁴ ActualTable 31 ⁵⁵ ActualActual15 ⁵⁶ Table 32 ⁵⁷		Watts _{EE}	= Watts (Watts	of Energy ef)	ficient fix	ture (based	on the speci	fied insta	lled fixtur	e type)					
$\begin{array}{c} Watts \rangle & Watts \rangle \\ Watts \rangle & Watts \rangle \\ LPD_{BASE} & = Baseline maximum lighting power density (LPD) for space type (Watts/ft2) \\ Area & = Area of the building or space associated with the design LPD_{BASE} value (ft2) \\ Hours W & = Weekly hours of equipment operation (hrs/week) \\ Weeks & = Weeks per year of equipment operation (weeks/year) \\ 1000 & = Conversion: 1000 Watts per kW \\ \hline \\ $		SAVE	= Averag	, e wattage r	eduction	of fixture (b	ased on the	specified	installed f	ixture type)					
$ \begin{array}{c c c c c c } LPD_{BASE} & = Baseline maximum lighting power density (LPD) for space type (Watts/ft2) \\ Area & = Area of the building or space associated with the design LPD_{BASE} value (ft2) \\ HoursW & = Weekly hours of equipment operation (hrs/week) \\ Weeks & = Weeks per year of equipment operation (weeks/year) \\ 1000 & = Conversion: 1000 Watts per kW \\ \hline \\ $			(Watts)											
Area= Area of the building or space associated with the design LPD BASE value (ft²)HoursW= Weekly hours of equipment operation (hrs/week)Weeks= Weeks per year of equipment operation (weeks/year)1000= Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTIONSBaseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyHigh-efficiency lighting system that exceeds building code.PARAMETER VALUESSAVEMeasure/TypeQty _{EE} Watts 28 ⁵⁴ New constructionActualTable 28 ⁵⁴ Table 28 ⁵⁴ Table 29 ⁵⁴ ActualTable 31 ⁵⁵ ActualActual15 ⁵⁶ Table 32 ⁵⁷			= Baselir	ne maximum	lighting	power densi	ity (LPD) for	space typ	e (Watts/	ft²)					
$ \begin{array}{c c c c c c c } HoursW &= Weekly hours of equipment operation (hrs/week) \\ Weeks &= Weeks per year of equipment operation (weeks/year) \\ 1000 &= Conversion: 1000 Watts per kW \\ \hline \\ $		Area	= Area o	f the buildin	g or spac	e associated	l with the de	sign LPD _B	_{ASE} value (ft ²)					
Weeks = Weeks per year of equipment operation (weeks/year)1000 = Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTIONSBaseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyBuilding code or standard design practice for the building or space type.Keeke type.High EfficiencyWigh-efficiency lighting system that exceeds building code.Keeke type.Keeke type.PARAMETER VALUESValuesSAVEAreaLPDHoursWkWeeket sign (yrs)Cost (\$)New constructionActualTable 28 ⁵⁴ Table 29 ⁵⁴ ActualTable 31 ⁵⁵ ActualActual15 ⁵⁶ Table 32 ⁵⁷		HoursW	= Weekl	y hours of ea	quipment	operation (hrs/week)								
1000 = Conversion: 1000 Watts per kWEFFICIENCY ASSUMPTONSBaseline EfficiencyBuilding code or standard design practice for the building or space type.Baseline EfficiencyHigh-efficiency lighting system that exceeds building code.High-efficiency lighting system that exceeds building code.PARAMETER VALUESQtyEEWattsEESAVEEEAreaLPDBASEHoursWkWeekLifeCost (\$)New constructionActualTable 28 ⁵⁴ Table 29 ⁵⁴ ActualTable 31 ⁵⁵ ActualActual15 ⁵⁶ Table 32 ⁵⁷		Weeks	= Weeks	per year of	equipme	nt operation	n (weeks/yea	nr)							
EFFICIENCY ASSUMPTIONSBaseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyHigh-efficiency lighting system that exceeds building code.PARAMETER VALUESMeasure/Type Qty_{EE} $Watts_{EE}$ $SAVE_{EE}$ $Area$ LPD_{BASE} $HoursWk_{53}$ $Week$ $Life$ (yrs) $Cost$ (\$)New construction $Actual$ $Table_{28}^{54}$ $Table 29^{54}$ $Actual$ $Table_{31}^{55}$ $Actual$ $Actual$ 15^{56} $Table 32^{57}$		1000	= Conve	rsion: 1000 \	Watts per	kW									
Baseline EfficiencyBuilding code or standard design practice for the building or space type.High EfficiencyHigh-efficiency lighting system that exceeds building code.PARAMETER VALUESMeasure/Type Qty_{EE} $Watts_{EE}$ $SAVE_{EE}$ $Area$ LPD_{BASE} HoursWkWeekLife $Cost ($)$ New construction $Actual$ $Table$ 28^{54} $Table 29^{54}$ $Actual$ $Table$ 31^{55} $Actual$ $Actual$ $Actual$ 15^{56} $Table 29^{57}$	EFFICIENCY ASSUMPTI	ONS													
High-efficiency lighting system that exceeds building code.PARAMETER VALUESPARAMETER VALUESPARAMETER VALUESMeasure/Type Qty_{EE} $Watts_{EE}$ $SAVE_{EE}$ $Area$ LPD_{BASE} HoursWkWeekLife $Cost ($)$ New constructionActual $\frac{Table}{28^{54}}$ $Table 29^{54}$ Actual $\frac{Table}{31^{55}}$ ActualActual $Actual$ 15^{56} $Table 32^{57}$	Baseline Efficiency	Building	code or sta	indard desig	n practice	e for the bui	Iding or space	ce type.							
PARAMETER VALUESMeasure/Type Qty_{EE} $Watts_{EE}$ $SAVE_{EE}$ $Area$ LPD_{BASE} HoursWkWeekLife $Cost ($)$ New construction $Actual$ $Table$ 28^{54} $Table 29^{54}$ $Actual$ $Table$ 31^{55} $Actual$ $Actual$ 15^{56} $Table 32^{57}$	High Efficiency	High-efficiency lighting system that exceeds building code.													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER VALUES														
New constructionActualTable 28^{54} Table 29^{54} ActualTable 31^{55} ActualActual15^{56}Table 32^{57}	Measure/Type	Qty _{EE}	Watts _{EE}	SAVE _{EE}	Area	LPD _{BASE}	HoursWk	Week s	Life (yrs)	Cost (\$)					
	New construction	Actual	tual $\begin{bmatrix} Table \\ 28^{54} \end{bmatrix}$ Table 29 ⁵⁴ Actual $\begin{bmatrix} Table \\ 31^{55} \end{bmatrix}$ Actual Actual $\begin{bmatrix} 15^{56} \end{bmatrix}$ Table 32 ⁵⁷												

⁵¹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG because the market is small businesses. ⁵² The LPD baseline approach is used for measure code S15 (LED Parking Garage Fixture measures in new construction projects) since the parking garage is a defined space with a maximum lighting power density allowed based on building code. For all other measures, savings are based on average wattage reduction per fixture. ⁵³ Use actual when available; otherwise use 4,380 (operating 12 hrs 365 days a year) ⁵⁴ See Appendix D. The installed fixture wattage and wattage reduction values are based on the specified installed fixture type.

⁵⁵ See Appendix D. The baseline LPD is based on the specified space type.

IMPACT FACTORS							
Program	ISR	RR _E	RR _D	CFs	CFw	FR	SO
Business Incentive	100%	99% ⁵⁸	101% ⁵⁸	Table 26 ⁵⁹	Table 26 ⁵⁹	28% ⁶⁰	0.4% ⁶¹

⁵⁶ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 *Measure Life Study Report* prepared for The Massachusetts Joint Utilities, by ERS

⁵⁷ See Appendix E.

⁵⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

⁵⁹ See Appendix B.

⁶⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

⁶¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive Lighting: Lighting Fixtures – Exterior Spaces (Retrofit), Code S8, S10, S12, S16, S22														
Last Revised Date	7/1/2013	}												
MEASURE OVERVIEW														
Description	This mea	sure	e involves	the p	urch	ase and i	nsta	Ilation of I	nigh	-efficiency	exterior lighti	ng fixtures		
	to replac	e ex	isting ope	eratin	g ligł	nting equi	ipme	ent (retrof	it).					
Primary Energy	Electric													
Impact														
Sector	Commer	cial/	Industria											
Program(s)	Business	Ince	entive Pro	gram,	, Sm	all Busine	ess D	irect Insta	ll Pr	ogram				
End-Use	Lighting													
Project Type	Retrofit													
GROSS ENERGY SAVIN	GS ALGOR	S ALGORITHMS (UNIT SAVINGS)												
Demand Savings	Δ kW		= (Qty _{BASE}	x Wat	tts _{BA}	_{se} – Qty _{ee}	x W	atts _{EE}) / 10	000					
Annual Energy	Δ kWh/yr	=	= (Qty _{BASE}	x Wat	tts _{BAS}	_{SE} – Qty _{EE}	x W	atts _{EE}) / 10	00>	k HoursWk	x Weeks			
Savings														
Definitions	Unit	= L	ighting fi	xture	upgi	rade mea	sure	2						
	Qty BASE	= (Quantity o	of bas	eline	e fixtures								
	Qty _{EE}	= (Quantity o	of inst	alleo	d fixtures								
	Watts _{BAS}	= \	Natts of k Watts)	baselir	ne fix	xture (bas	sed o	on the spe	cifie	d existing o	or baseline fix	ture type)		
	Watts	= \	Natts of F	nerg	/ effi	cient fixt	ure	(based on	the	specified in	nstalled fixture	e type)		
		(Watts)		,									
	HoursW	= \	Neekly ho	ours o	feq	uipment o	oper	ation (hrs,	/we	ek)				
	Weeks	= \	Neeks pe	r year	of e	quipmen	t op	eration (w	eek	s/year)				
	1000	= (Conversio	n: 100	00 W	/atts per l	٨W							
EFFICIENCY ASSUMPTI	ONS													
Baseline Efficiency	The existi	ng li	ghting sy	stem.										
High Efficiency	High-effic	ienc	y lighting	syste	em th	nat excee	ds b	uilding coo	de.					
PARAMETER VALUES			,											
Measure/Type		W	atts _{BASE}	Qty	EE	Watts	E	HoursW	۲ ⁶²	Weeks	Life (yrs)	Cost (\$)		
Retrofit	Actual	Ta	ble 30 ⁶³	Actu	lal	Table 28	8 ⁶³	Actual		Actual	13 ⁶⁴	Table 32 ⁶⁵		
IMPACT FACTORS														
Program	ISR		RR _E	_		RR _D		CFs		CFw	FR	SO		
Business Incentive	100%		99% ⁶	6	1	01% ⁵⁸	Ta	able 26 ⁶⁷	Ta	able 26 ⁶⁷	28% ⁶⁸	0.4% ⁶⁹		
Direct Install	100% 100% ⁷⁰ 100% ⁷⁰ Table 26 ⁶⁷ Table 26 ⁶⁷ 0% ⁷¹ 0% ⁷¹													

⁶² Use actual when available; otherwise use 4380 (operating 12 hrs 365 days a year)

⁶³ See Appendix D. The baseline and installed fixture wattages are based on the specified baseline fixture type.

⁶⁴ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS

⁶⁵ See Appendix E.

⁶⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

⁶⁷ See Appendix B.

⁶⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

⁶⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

⁷⁰ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁷¹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG because the market is small bsuiness.

Prescriptive Lighting: Lighting Controls – Interior Spaces, Code L60, L70, L71, L60.1, L70.1, L71.1														
Last Revised Date	7/1/2015	5												
MEASURE OVERVIEW														
Description	This mea fixtures.	sure	involves the	ins	tallation of I	ighting con	trols on new o	or existi	ing interior	lighting				
Primary Energy Impact	Electric													
Sector	Commer	cial/I	Industrial											
Program(s)	Business	Business Incentive Program, Small Business Direct Install Program												
End-Use	Lighting	Lighting												
Project Type	New con	New construction, Retrofit												
GROSS ENERGY SAVING	S ALGORIT	HMS	6 (UNIT SAVI	NGS	S)									
Demand Savings	$\Delta kW = Qty_{FIXTURES} \times Watts / 1000 \times WHF_d$													
Annual Energy Savings	∆kWh/yı	$\Delta kWh/yr = Qty_{FIXTURES} x Watts / 1000 x HoursWk x Weeks x SVG x WHFe cool$												
	ΔMMBtu	Δ MMBtu/yr = -Qty _{FIXTURES} x Watts / 1000 x HoursWk x Weeks x SVG x WHF _{e heat}												
Definitions	Unit	Unit = Lighting control project or space												
	Qty _{FIXTURE}	S	= Total qua	anti	ity of fixture	s connecte	d to the new o	ontrols	;					
	Watts		= Wattage	pe	r fixture con	nected to t	he new contro	ol (Watt	ts)					
	HoursW	HoursWk = Weekly hours of equipment operation before installation of controls												
	(hrs/week)													
	Weeks		= Weeks p	er y	/ear of equip	oment oper	ation (weeks/	year)						
	SVG		= % of ann	ual	lighting ene	rgy saved b	y lighting con	trol (%)						
	WHF _d		= Waste h time	eat	factor for de	emand to a	ccount for coc	oling sav	vings from	reduced run				
	WHF _{e,cool}		= Waste he	eat	factor for er	nergy to acc	count for cool	ing saviı	ngs from r	educed run				
	WHFahaat		= Waste h	eat	factor for er	nergy to acc	count for incre	eased he	eating load	l from				
	een e,near	L	efficient	ligh	nting				0					
	1000		= Conversi	on:	1000 Watts	per kW								
EFFICIENCY ASSUMPTIO	NS					1								
Baseline Efficiency	The basel	ine ca	ase is a manua	al sw	vitch in the ab	sence of cor	ntrols.							
High Efficiency	Lighting	conti	rols that auto	oma	tically contr	ol the conn	ected lighting	system	ıs.					
PARAMETER VALUES					·			•						
Measure/Type	Qty Watts ⁷² HoursWk ⁷³ Weeks SVG Life (yrs) Cost (\$)													
New construction	Actual	Table	e 28 or Table	30	Actual	Actual	Table 3	4 ⁷⁴	10 ⁷⁵	Table 32 ⁷⁶				
Retrofit	Actual	Table	e 28 or Table 3	30	Actual	Actual	Table 3	4 ⁷⁴	9 ⁷⁵	Table 32 ⁷⁶				
Measure/Type	WHF,	ł	WHF _{e.cool}	\	WHF _{e,heat}									
New Construction	1.067	8	1.1988		0.00246 ⁸									
Retrofit	1.067 ⁸ 1.198 ⁸ 0.00246 ⁸													

⁷⁶ See Appendix E.

⁷² See Appendix D. The controlled fixture may be selected from either the baseline or installed wattage tables. The controlled wattage is determined using the wattage tables and the selected of controlled fixture type. ⁷³ Use actual hours when known. If hours are unknown, use the values from Table 33.

⁷⁴ See Appendix F. The savings factor is determined using the Lighting Control Savings table and the space type specified in the project Data Collection and Information Form. If the space type is unknown, use the "Other" space type value.

⁷⁵ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

Prescriptive Lighting: L	Prescriptive Lighting: Lighting Controls – Interior Spaces, Code L60, L70, L71, L60.1, L70.1, L71.1												
IMPACT FACTORS													
Program	ISR	RR _E	RR _D	CFs	CFw	FR	SO						
Business Incentive	100%	99% ⁷⁷	101% ⁷⁷	Table 26 ⁷⁸	Table 26 ⁷⁸	28% ⁷⁹	0.4% ⁸⁰						
Direct Install	100%	100%81	100% ⁸¹	Table 26 ⁷⁸	Table 26 ⁷⁸	0% ⁸²	0% ⁸²						

⁷⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures. ⁷⁸ See Appendix B.

⁷⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

 ⁸⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.
 ⁸¹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁸² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG because the market is small business.

Prescriptive Lighting	: Lighting Fixtures – Refrigerated Spaces, Code S30, S31, S32, S33
Last Revised Date	11/12/2013
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of high-efficiency lighting fixtures in refrigerated spaces instead of standard lighting fixtures (new construction projects) or to replace existing operating lighting fixtures (retrofit). The new fixtures may be installed vertically or horizontally in the refrigerated cases.
Primary Energy Impact	Electric
Sector	Commercial/Industrial
Program(s)	Business Incentive Program, Small Business Direct Install Program
End-Use	Lighting
Project Type	New construction, Retrofit
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)
Demand Savings	For new construction vertical: $\Delta kW = \# doors \ x \ SAVE_{EE} / 1000 \ x \ BF$ For new construction horizontal: $\Delta kW = \# feet \ x \ SAVE_{EE} / 1000 \ x \ BF$ For retrofit vertical: $\Delta kW = (Qty_{BASE} \ x \ Watts_{BASE} - \# doors \ x \ Watts_{EE}) / 1000 \ x \ BF$ For retrofit horizontal: $\Delta kW = (Qty_{BASE} \ x \ Watts_{BASE} - \# feet \ x \ Watts_{FE}) / 1000 \ x \ BF$
Annual Energy	For new construction vertical: $\Delta kWh/yr = \#doors \times SAVE_{FF} / 1000 \times HoursWk \times Weeks \times BF$
Savings	For new construction horizontal: ΔkWh/yr = #feet x SAVE _{EE} / 1000 x HoursWk x Weeks x BF For retrofit-vertical: ΔkWh/yr = (Qty _{BASE} x Watts _{BASE} – #doors x Watts _{EE}) / 1000 x HoursWk x Weeks x BF For retrofit horizontal: ΔkWh/yr = (Qty _{BASE} x Watts _{BASE} – #feet x Watts _{EE}) / 1000 x HoursWk x Weeks x BF
Definitions	Unit= Lighting fixture upgrade measureQtyBASE= Quantity of baseline fixtures#doors= Quantity of refrigerated doors with installed LED fixtures#feet= Horizontal feet of new lighting fixture(s) (ft)SAVEEE= Average wattage reduction per door (vertical) or per foot (horizontal) with LED (Watts)WattsBASE= Watts of baseline fixture (based on the specified baseline fixture type) (Watts)
	Watts EE= Watts per refrigerated door (vertical) or per foot (horizontal) with LED fixture (Watts)HoursWk= Weekly hours of equipment operation (hrs/week)Weeks= Weeks per year of equipment operation (weeks/year)BF= Bonus factor to account for refrigeration savings due to reduced waste heat1000= Conversion: 1000 Watts per kW
EFFICIENCY ASSUMPTI	ONS
Baseline Efficiency High Efficiency	For new construction projects, the baseline is represented by building code or standard design practice for the building or space type. For retrofit projects, the baseline is the existing lighting system. High-efficiency lighting system that exceeds building code.
High Efficiency	nigh-enricency lighting system that exceeds building code.

Prescriptive Lighting: Lighting Fixtures – Refrigerated Spaces, Code S30, S31, S32, S33												
PARAMETER VALUES												
Measure/Type	Qty BASE	Watts	BASE		#doors, #feet		Watts _{EE}			SAVE _{EE}		
New construction	NA	NA			Actual	1	NA	٦	Table 29 ⁸³			
Retrofit	Actual	Table 3	0 ⁸³		Actual		Tabl	e 28 ⁸³		NA		
Measure/Type	HoursWk ⁸⁴	Week	s		BF		Life	(yrs)		Cost (\$)		
New construction	Actual	Actua	al		1.29 ⁸⁵		1	5 ⁸⁶	٦	Table 32 ⁸⁷		
Retrofit	Actual	Actua	al		1.29 ⁸⁵		1	3 ⁸⁶	٦	Table 32 ⁸⁷		
IMPACT FACTORS												
Program	ISR	RR _E	RF	≀ D	CFs	CF	w	FR		SO		
Business Incentive	100%	99% ⁸⁸	101	% ⁸⁸	Table 26 ⁸⁹	Table	26 ⁸⁹	28% ⁹⁰		0.4%91		
Direct Install	100%	100 ^{%92}	100	% ⁹²	Table 26 ⁸⁹	Table	26 ⁸⁹	0% ⁹³		0% ⁹³		

⁸³ See Appendix D. The fixture wattage and wattage reduction values are based on the specified fixture types for both baseline and installed fixtures.

⁸⁴ Use actual when available; otherwise use 4,057 (retail average annual operating hours, From New York Technical Reference Manual, 2010)

 ⁸⁵ For prescriptive refrigerated lighting measures, the default value is 1.29 (calculated as (1 + (1.0 / 3.5))), based on the assumption that all lighting in refrigerated cases is mechanically cooled, a typical refrigeration efficiency 3.5 COP, and assuming 100% of lighting heat needs to be mechanically cooled at time of summer peak.
 ⁸⁶ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁸⁷ See Appendix E.

⁸⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

⁸⁹ See Appendix B.

⁹⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

⁹¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

⁹² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁹³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG because the market is small business.

Prescriptive Lighting: Lighting Controls – Refrigerated Spaces, Code L50													
Last Revised Date	7/1/2013	7/1/2013											
MEASURE OVERVIEW													
Description	This meas	ure involves tl	he purchase	and installati	ion of occupa	ancy-based lig	hting contro	ols on new					
	high-effici	iency lighting f	ixtures in ref	frigerated spa	aces. The pro	ogram does no	ot provide in	ncentives					
	for lightin	g controls on e	existing ineff	icient lighting	g.								
Primary Energy Impact	Electric	Electric											
Sector	Commerc	ial/Industrial											
Program(s)	Business I	ncentive Prog	ram, Small B	usiness Direc	t Install Prog	gram							
End-Use	Lighting												
Project Type	New cons	truction, Retro	ofit										
GROSS ENERGY SAVIN	IGS ALGOR	S ALGORITHMS (UNIT SAVINGS)											
Demand Savings	Δ kW	= Qty x Wa	tts / 1000 x E	3F									
Annual Energy	Δ kWh/yr	= Qty x Wa	tts / 1000 x	HoursWk x V	Veeks x SF x E	BF							
Savings													
Definitions	Unit	= 1 new sens	or (that may	control mult	tiple lighting	fixtures)							
	Qty	= Quantity of	f fixtures con	nected to th	e control								
	Watts	= Fixture wat	ttage of the f	ixture(s) con	nected to th	e control (Wa	tts)						
	HoursWk	= Weekly ho	urs of equipr	nent operation	on (hrs/weel	<)							
	Weeks	= Weeks per	year of equi	pment opera	tion (weeks/	′year)							
	SF	= Savings fac	tor, or perce	ntage of savi	ngs resulting	g from a reduc	tion in ope	rating hours					
	BF	= Bonus facto	or to accoun	t for refrigera	ation savings	due to reduce	ed waste he	eat					
	1000	= Conversion	1000 Watts	s per kW									
EFFICIENCY ASSUMPT	IONS												
Baseline	No occupa	ancy sensor.											
High Efficiency	Lighting c	ontrols which	automaticall	y control con	nected light	ing systems ba	ased on occ	upancy.					
PARAMETER VALUES													
Measure/Type	Qty	Watts ⁹⁴	HoursWk	Weeks	SF	BF	Life (yrs)	Cost (\$)					
New construction	Actual	Table 28	Actual	Actual	30.7% ⁹⁶	1.29 ⁹⁷	10 ⁹⁸	Table 32 ⁹⁹					
Retrofit	Actual	Table 28	Actual	Actual	30.7% ⁹⁶	1.29 ⁹⁷	9 ⁹⁸	Table 32 ⁹⁹					

⁹⁴ See Appendix D. The controlled fixture may be selected from either the baseline or installed wattage tables. The controlled wattage is determined using the wattage tables and the selected of controlled fixture type. ⁹⁵ Use actual when available; otherwise use 8,760 hours per year (assuming equipment operates 24 hours per day, 365 days a year).

⁹⁶ US DOE, "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting." Refrigerated cases were metered for 12 days to determine savings from occupancy sensors. Assumes that refrigerated freezers and refrigerated coolers will see the same amount of savings from sensors.

⁹⁷ For prescriptive refrigerated lighting measures, the default value is 1.29 (calculated as (1 + (1.0 / 3.5))). Based on the assumption that all lighting in refrigerated cases is mechanically cooled, with a typical 3.5⁹⁷ COP refrigeration system efficiency, and assuming 100% of lighting heat needs to be mechanically cooled at time of summer peak.

⁹⁸ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁹⁹ See Appendix E.

Prescriptive Lighting	: Lighting Co	ntrols – Refrige	erated Spac	es, Code L50							
IMPACT FACTORS											
Program	ISR	RR _E	RR _D	CFs	CFw	FR	SO				
Business Incentive	100%	99% ¹⁰⁰	$101\%^{100}$	Table 26 ¹⁰¹	Table 26 ¹⁰¹	28% ¹⁰²	0.4% ¹⁰³				
Direct Install	100%	$100\%^{104}$	$100\%^{104}$	Table 26 ¹⁰¹	Table 26 ¹⁰¹	0% ¹⁰⁵	0% ¹⁰⁵				

¹⁰⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures. ¹⁰¹ See Appendix B.

¹⁰² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting. ¹⁰³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

¹⁰⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁰⁵ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG because the market is small business.

Variable Frequency Drives

Prescriptive VFD: Va	riable Freque	ncy D	rives (V	/FD) for H\	/A(2								
Last Revised Date	7/1/2013													
MEASURE OVERVIEW														
Description	This measure electric moto also known a inverter drive This measure fans, return f circulation pu	This measure involves the purchase and installation of a variable frequency drive (VFD) on an electric motor serving HVAC loads. A VFD is a specific type of adjustable-speed drive. VFDs are lso known as adjustable-frequency drives (AFD), variable-speed drives (VSD), AC drives or nverter drives. This measure covers VFDs on 5 HP to 100 HP motors for the following HVAC equipment: supply ans, return fans, building exhaust fans, chilled water distribution pumps, and heating hot water drives inculation pumps. For VFDs on other equipment type or serving non-HVAC loads, use the Custom Measure approach. This measure is not eligible for new construction applications for												
	Custom Meas	ustom Measure approach. This measure is not eligible for new construction applications for												
	which VSDs a	hich VSDs are required per Section 503.2.5.1 of IECC 2009.												
Primary Energy Impact	Electric	ectric												
Sector	Commercial													
Program(s)	Business Ince	entive	Program	1										
End-Use	VFDs for HVA	۱C												
Project Type	Retrofit													
GROSS ENERGY SAVIN	GS ALGORITHN	NS (UN	NIT SAVI	NGS)										
Demand Savings	ΔkW	$= HP_{v}$	FD X DSV	G										
Annual Energy Savings	∆kWh/yr	= HP _V	_{fd} x ESV0	G										
Definitions	Unit =	= 1 VFC	D (that n	nay control	mu	Itiple motors)								
	HP _{VFD} =	= Total	horsep	ower of mo	tor	(s) connected	to VFD (hp)							
	ESVG =	ener	gy saving	gs factor (k)	Nh,	/yr/hp)								
	DSVG =	- dema	and savi	ngs factor (kW,	/hp)								
EFFICIENCY ASSUMPTI	ONS													
Baseline Efficiency	The baseline	reflect	ts no VF	D installed	ont	the HVAC equi	ipment.							
High Efficiency	The high-effice average mote	ciency or spe	case inv ed.	olves a VFE) in	stalled on exis	ting HVAC equ	uipment	to red	uce the				
PARAMETER VALUES														
Measure/Type	HPVFDESVGDSVGLife (yrs)Cost (\$)													
All	Actual		Та	ble 1		Table 1	13 ¹⁰	06		Table 2				
IMPACT FACTORS														
Measure/Type	ISR	F	RRE	RR _D		CFs	CFw	FR		SO				
All	100%	99	99% ¹⁰⁷ 101% ¹⁰⁷ Table 26 ¹⁰⁸ Table 26 ¹⁰⁸ 50% ¹⁰⁹ 0.4%											

¹⁰⁸ See Appendix C.

¹⁰⁶ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS. ¹⁰⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive

measures.

¹⁰⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ¹¹⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Measure Code	Measure Description	ESVG (kWh/yr/hp)	DSVG (kW/hp)
SFA, SFP	Supply Fans	1,001	0.173
RFA, RFP	Return Fans	1,524	0.263
BEF	Exhaust Fans	755	0.120
CWP	Chilled Water Pumps	1,746	0.188
HHWP	Heating Hot Water Circulation Pump	1,746	0.188

Table 1 – VFD Energy and Peak Demand Savings Factors (ESVG and DSVG)¹¹¹

Table 2 – Measure Costs for VFD¹¹²

Cumulative Motor HP Controlled by Each VFD (HP _{VFD})	Measure Cost (\$)
5	\$2,425
7.5	\$2,648
10	\$2,871
15	\$3,317
20	\$3,763
25	\$4,209
30	\$4,655
40	\$5,547
50	\$6,439
60	\$7,331
70	\$8,223
80	\$9,115
90	\$10,007
100	\$10,899

¹¹¹ National Grid 2001 values averaged from previous evaluations of VFD installations. Values are those used for existing construction, except for chilled water pumps which is used for new construction. National Grid existing construction baseline is similar to Vermont baseline for new and existing applications.

which is used for new construction. National Grid existing construction baseline is similar to Vermont baseline for new and existing applications. ¹¹² Cost data estimated based on correlation between total cost and controlled HP results from: Navigant, NEEP Incremental Cost Study Phase Two Final Report, January 2013, Table 15.
HVAC Equipment

Prescriptive HVAC: U	nitary Air-Conditioners
Last Revised Date	7/1/2013
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of new high-efficiency air conditioning equipment instead of new standard efficiency air conditioning equipment. This measure includes high-efficiency electrically operated air-cooled single package and split system air conditioners, including room or window air conditioners for commercial/industrial facilities.
Primary Energy Impact	Electric
Sector	
Program	
End-Use	HVAC
GRUSS EINERGY SAVING	GS ALGORITHIVIS (UNIT SAVINGS)
Demand Savings	$\Delta kW = Tons \times 12 \times [(1/SEER_{BASE} - 1/SEER_{EE})]$
	For equipment with rated size \geq 5.4 tons (\geq 65,000 Btuh): $\Delta kW = Tons \times 12 \times [(1/EER_{BASE} - 1/EER_{EE})]$
Annual Energy	For equipment with rated size < 5.4 tons (< 65,000 Btuh):
Savings	$\Delta kWh/yr = Tons \times 12 \times [(1/SEER_{BASE} - 1/SEER_{EE})] \times EFLH_C$
	For equipment with rated size ≥ 5.4 tons ($\geq 65,000$ Btun):
	$\Delta kWh /yr = Ions \times 12 \times [(1/EER_{BASE} - 1/EER_{EE})] \times EFLH_{C}$
Definitions	Onit = 1 air conditioning unit Tons = Nominal rating of the capacity of the heat pump in Tons (tons = kBtuh/12) SEER _{BAS} = Cooling seasonal energy efficiency ratio of the baseline equipment < 5.4 tons (Btuh/Watt)
	 EER_{EE} = Cooling energy efficiency ratio of the efficient equipment ≥ 5.4 tons (Btuh/Watt) EFLH_C = Cooling equivalent full load hours per year (hrs/yr) 12 = Conversion: 1 ton = 12 kBtuh
EFFICIENCY ASSUMPTIC	ONS
Baseline Efficiency	Meets minimum cooling efficiency requirements based on IECC 2009, Table 503.2.3(1)
High Efficiency	Rated cooling and heating efficiency of new equipment must meet or exceed the minimum requirements on the program Data Collection and Measure Code Reference Forms (available on the Efficiency Maine website: <u>http://www.efficiencymaine.com/</u>).

Prescriptive HVAC: Unitary Air-Conditioners									
PARAMETER VALUES									
Measure/Type	Tons	SEER _{BASE} , EER _{BA}	SEER _{EE,}	EER _{EE}	EFLH _C		Life (yrs)		Cost (\$)
Unitary AC < 11.25 tons	Actual	Table 3	Actu	al	829 ¹¹³		15 ¹¹⁴		Table 3
Unitary AC ≥ 11.25 tons	Actual	Table 3	Actu	ual 60		605 ¹¹³		15 ¹¹⁴	Table 3
Window AC	Actual	Table 3	Actu	al	82	.9 ¹¹³		9 ¹¹⁵	Table 3
IMPACT FACTORS									
Measure/Type	ISR	RR _E	RR _D	C	Fs	CFw		FR	SO
All	100%	99% ¹¹⁶	101%116	Table 26 ¹¹⁷		Table 26 ¹¹⁷		50% ¹¹⁸	0.4% ¹¹⁹

Table 3 – Baseline Efficiency Values and Measure Cost for Unitary AC Systems

	Cooling Capacity	Cooling Capacity	Base	Incremental Cost
Equipment Type	(Tons)	(Btuh)	Efficiency ^A	(\$/ton) ^B
	< 5.4 (Split System)	< 65,000 (Split System)	13.0 SEER	\$115
Air Conditioners, Air-Cooled	< 5.4 (Single Package)	< 65,000 (Single Package)	13.0 SEER	\$115
	≥ 5.4 and < 11.25	≥ 65,000 and < 135,000	11.2 EER	\$91
	≥ 11.25 and < 20	≥ 135,000 and < 240,000	11.0 EER	\$99
	≥ 20 and < 63.3	≥ 240,000 and < 760,000	10.0 EER	\$100 ^c
	≥ 63.3	≥ 760,000	9.7 EER	\$100 ^c
Window AC	All	All	11.0 EER ^C	\$50 ^D

^A IECC 2009, Table 503.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners and Condensing Units.

^B The total incremental cost values are comparable to the values found in Navigant, NEEP Incremental Cost Study Report Final, September 2011, Table 1-15.

^c Vermont TRM 2014 Tier 1.

^D The baseline efficiency and measure cost for Window AC units is based on a 10,000 Btu/h unit (same as assumption for Window AC in the Residential TRM).

¹¹³ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

¹¹⁴ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹¹⁵ Default assumptions used in the ENERGY STAR® calculator, April 2013.

¹¹⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

¹¹⁷ See Appendix B.

¹¹⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures.

¹¹⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive HVAC: Hea	at Pump Systems
Last Revised Date	7/1/2013
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of a new high-efficiency heat pump system
	instead of a new standard efficiency heat pump. It includes high-efficiency electric air-to-air,
	water source (open loop), and ground source (closed loop) heat pump systems.
Primary Energy Impact	Electric
Sector	Commercial
Program	Business Incentive Program
End-Use	HVAC
Project Type	New construction, Retrofit
GROSS ENERGY SAVINGS	S ALGORITHMS (UNIT SAVINGS)
Demand Savings	For air-to-air equipment < 5.4 tons (< 65,000 Btuh):
	$\Delta kW_{c} = CAP_{c} \times 12 \times [(1/SEER_{BASE} - 1/SEER_{EE})]$
	$\Delta kW_{H} = CAP_{H} \times 12 \times [(1/HSPF_{BASE} - 1/HSPF_{EE})]$
	For air-to-air equipment \geq 5.4 tons (\geq 65,000 Btuh) and all water and ground source equipment:
	$\Delta kW_{c} = CAP_{c} \times 12 \times [(1/EER_{BASE} - 1/EER_{FE})]$
	$\Delta kW_{\rm H} = CAP_{\rm H} \times 12 \times \left[(1/COP_{\rm BASE} - 1/COP_{\rm FE}) \right] / 3.412$
Annual Energy Savings	For air-to-air equipment < 5.4 tons (< 65.000 Btuh):
	$\Delta kWh_c/vr_= CAP_c \times 12 \times [(1/SEFR_{page} - 1/SEFR_{cc})] \times FELH_c$
	$\Delta kWh_{\rm W}/{\rm yr} = CAP_{\rm W} / 1000 \times [(1/{\rm HSPE}_{\rm parc} - 1/{\rm HSPE}_{\rm rc}] \times {\rm Fel} H_{\rm W}$
	For air-to-air equipment > 5.4 tons (> 65.000 Rtub) and all water and around source equipment:
	Abwh $f_{\rm vr} = CAP \times 12 \times [(1/FER = 1/FER)] \times FELH$
	$\Delta k_{\text{WH}C} = CAP \left(\frac{12}{C} \times \frac{12}{C} \right) \left[\frac{1}{COP} + \frac{1}{COP} \right] \times EEEE \left[\frac{12}{C} \times \frac{12}{C} \right]$
Definitions	$\Delta KWH_H/yI = CAF_H/1000 \times [(1/COF_{BASE} - 1/COF_{EE})] \times EFLH_H/5.412$
Deminitions	CAP = Pated cooling capacity of the heat number in tens (tens)
	CAP_{c} = Rated cooling capacity of the heat pump (Rtub)
	CAFH = Rated fielding capacity of the field pump (Bluff)
	SEER = Cooling seasonal energy efficiency ratio of the afficient equipment (Blun/Wall)
	SEER _{EE} = Cooling seasonal energy efficiency ratio of the efficient equipment (Bruh watt)
	HSPF _{BASE} = Heating seasonal performance factor of the baseline equipment (Btun/Watt)
	HOPF _{EE} = Heating seasonal performance factor of the efficient equipment (Btuh/Watt)
	ECRBASE = Cooling energy efficiency ratio of the baseline equipment (Btuh/Watt)
	= Cooling energy efficiency ratio of the efficient equipment (Btuh/Watt)
	COP _{BASE} = Heating coefficient of performance of the baseline equipment
	COP _{EE} = Heating coefficient of performance of the efficient equipment
	EFLH _c = Cooling equivalent full load hours per year (hrs/yr)
	EFLH _H = Heating equivalent full load hours per year (hrs/yr)
	12 = Conversion: 1 ton = 12 kBtuh
	3.412 = Conversion: 3.412 kBtuh per kW
EFFICIENCY ASSUMPTIO	NS
Baseline Efficiency	Meets minimum cooling and heating efficiency requirements based on IECC 2009, Table 503.2.3(2)
	Rated cooling and heating efficiency of new equipment must meet or exceed the minimum
High Efficiency	requirements on the program Data Collection and Measure Code Reference Forms (available
	on the Efficiency Maine website: http://www.efficiencymaine.com/).

Prescriptive HVAC: Heat Pump Systems												
PARAMETER VALUES												
Measure/Type	CAD		120	SEER _{BASE}	SEER _{EE}	HS	SPF _{BASE}	HSPF		ссіц ¹²²	Life	Cost
	CAPC	CAP	Н	EER_{BASE}	EER _{EE}	C	OP _{BASE} COP _{EE}		E		(yrs)	(\$/ton)
Heat Pump < 5.4 tons	Actual	Acti	ual	Table 4	Actual	Ta	able 4	Actua	al 829	2,200	15 ¹²³	\$100 ¹²⁴
Heat Pump ≥ 5.4 tons	Actual	Actu	ual	Table 4	Actual	т·	abla 4	Actur	0 020	1 600	1 ⊑ ¹²³	¢100 ¹²⁴
and < 11.25 tons	Actual	ALL	uai	Table 4	Actual		able 4	Actua	029	1,000	13	\$100
Heat Pump ≥ 11.25 tons	Actual	Acti	ual	Table 4	Actual	Ta	able 4	Actua	al 605	1,600	15 ¹²³	\$100 ¹²⁴
IMPACT FACTORS												
Measure/Type	ISI	R		RR _E	RR_{D}		CF	s	CFw	FR		SO
All	100)%	(99% ¹²⁵	101% ¹²	5	Table	26 ¹²⁶	Table 26 ¹²⁶	50% ¹²	7	0.4% ¹²⁸

Table 4 – Efficiency Requirements and Measure Cost for Heat Pump Systems

Equipment Type	Rated Coolir	g Capacity, CAP _c	Base Efficiency ^A		
	Tons	Btuh	Cooling	Heating	
	< 5.4 (split system)	< 65,000 (split system)	13.0 SEER	7.7 HSPF	
Air-Cooled	< 5.4 (single package)	< 65,000 (single package)	13.0 SEER	7.7 HSPF	
	≥ 5.4 and < 11.25	≥ 65,000 and < 135,000	11.0 EER	3.3 COP	
	≥ 11.25 and < 20	≥ 135,000 and < 240,000	10.6 EER	3.2 COP	
	≥ 20	≥ 240,000	9.5 EER	3.2 COP	
Mator Source	< 1.4	< 17,000	11.2 EER	4.2 COP	
water source	≥ 1.4 and < 11.25	≥ 17,000 and < 135,000	12.0 EER	4.2 COP	
Groundwater Source (open loop)	< 11.25	< 135,000	16.2 EER	3.6 COP	
Ground source (closed loop)	< 11.25	< 135,000	13.4 EER	3.1 COP	

^A IECC 2009, Table 503.2.3(2). Minimum Efficiency Requirements: Electrically Operated Unitary and Applied **Heat Pumps**

¹²⁴ Efficiency Vermont Technical Reference User Manual (TRM) 2014, Table 1, page 40.

¹²⁰ Use actual heating capacity based on application form or equipment specifications. If the heating capacity is unknown, calculate heating capacity based on cooling capacity as follows: for equipment < 5.4 tons: heating capacity = cooling capacity; for equipment \geq 5.4 tons, heating capacity = cooling capacity × 13,900/12,000. ¹²¹ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

¹²² EMT assumes 2,200 heating full load hours for heat pumps smaller than 5.4 tons (65,000 BTUh) and 1,600 heating full load hours for heat pumps larger than or equal to 5.4 tons.

GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹²⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

¹²⁶ See Appendix B.

¹²⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ¹²⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive HVAC: P	ackaged	Termina	al Air Co	nditioner	s and Hea	at Pump	5			
Last Revised Date	7/1/201	13								
MEASURE OVERVIEW										
Description	This me conditic standar	asure inv oners (PTA d efficien	olves the ACs) and cy PTAC o	purchase packaged or PTHP ec	and instal terminal h quipment.	lation of eat pump	new high os (PTHPs	-efficiency) equipme	packaged t nt instead o	erminal air of new
Primary Energy	Electric	ctric								
Impact										
Sector	Comme	rcial								
Program	Busines	s Incentiv	e Progra	m						
End-Use	HVAC									
Project Type	New co	nstructio	n, Retrofi	t						
GROSS ENERGY SAVIN	GS ALGO	RITHMS (UNIT SAV	/INGS)						
Demand Savings	ΔkW_{c}	$= CAP_c / 2$	1,000 × [(1/EER _{BASE}	- 1/EER _{EE})]				
_	ΔkW_{H}	$= CAP_{H} /$	1,000 ×	(1/COP _{BAS}	_E - 1/COP _E	- ==)] / 3.41	2			
Annual Energy	$\Delta kWh_c/$	′yr = CAP	_c / 1,000	\times [(1/EER _E	BASE - 1/EE	R_{EE})] × EF	LH _c			
Savings	ΔkWh_{H}	/yr = CAP	н / 1,000	× [(1/COP	BASE - 1/CO	$DP_{EE})] \times E$	FLH _H / 3.4	112		
Definitions	Unit	= 1	PTAC or F	PTHP						
	CAP _c	= Ra	ated cooli	ing capacit	ty of the n	ew equip	ment (Bti	uh).		
	CAP _H	= Ra	ated heat	ing capaci	ty of the n	ew equip	ment (Bt	uh).		
	EER_{BASE}	= Co	ooling en	ergy efficie	ency ratio	of the ba	seline equ	uipment (E	Btuh/Watt)	
	EER _{EE}	= Co	ooling en	ergy efficie	ency ratio	of the eff	icient equ	uipment (E	Stuh/Watt)	
	COPBASE	= He	eating co	efficient o	f performa	ance of th	e baselin	e equipme	ent	
	COPEE	= He	eating co	efficient o	f performa	ance of th	e efficier	nt equipme	ent	
	EFLH _c	= Co	ooling equ	uivalent fu	Ill load hou	urs per ye	ar (hrs/y	r)		
	EFLH _H	= He	eating eq	uivalent fu	ull load ho	urs per ye	ear (hrs/y	r)		
	3.412	= Co	onversion	i: 3.412 kB	tuh per k	W				
EFFICIENCY ASSUMPTI	ONS									
Baseline Efficiency	The bas	eline equ	ipment n	nust meet	the minim	num cooli	ng and he	eating effic	ciency requi	irements
	based o	n the cur	rent fede	ral energy	^v conserva	tion stand	dards (eff	ective Sep	tember 30,	2012).
	Rated c	ooling an	d heating	; efficiency	of new e	quipment	must me	eet or exce	ed the min	imum
High Efficiency	require	ments on	the prog	ram Data	Collection	and Mea	sure Cod	e Referenc	ce Forms (a	vailable on
	the Effic	ciency Ma	aine webs	site: <u>http:/</u>	<mark>/www.ef</mark> fi	ciencyma	ine.com/	<u>/</u>).		
PARAMETER VALUES	n	T	n	1	1	1	n	1	1	1
Measure/Type	CAP _c	CAP _H	EER _{BAS}	EER _{EE}	COP _{BASE}	COP _{EE}	EFLH _c	EFLH _H	Life (yrs)	Cost (\$)
РТАС	Actual	Actual	Table 5	Actual	Table 5	Actual	829 ¹²⁹	NA	15 ¹³⁰	\$75 ¹³¹
PTHP	Actual	Actual	Table 5	Actual	Table 5	Actual	605 ¹²⁹	2,200	15 ¹³⁰	\$75 ¹³¹

¹²⁹ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

¹³⁰ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS. ¹³¹ Environmental Protection Agency, ENERGY STAR[®] Market & Industry Scoping Report Packaged Terminal Air Conditioners and Heat Pumps, December 2011. ¹³² EMT assumes 2,200 heating full load hours for heat pumps smaller than 5.4 tons (65,000 BTUh) and 1,600 heating full load hours for heat pumps larger than or

equal to 5.4 tons.

Prescriptive HVAC: Packaged Terminal Air Conditioners and Heat Pumps									
IMPACT FACTORS									
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO		
All	100%	99% ¹³³	101% ¹³³	Table 26 ¹³⁴	Table 26 ¹³⁴	50% ¹³⁵	0.4% ¹³⁶		

¹³³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures. ¹³⁴ See Appendix B. ¹³⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive non-

lighting measures. ¹³⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

	Equipment Cl	ass	Minimum Energy Con	servation Standards
Equipment	Category ^A	Cooling Capacity (Btu/h)	Cooling (EER)	Heating (COP)
		<7,000	11.7	NA
	Standard Size	7,000 - 15,000	13.8 – (0.300 × Cap ^B)	NA
PTAC -		>15,000	9.3	NA
		<7,000	9.4	NA
	Non-Standard Size	7,000 - 15,000	10.9 – (0.213 × Сар ^в)	NA
		>15,000	7.7	NA
		<7,000	11.9	3.3
	Standard Size	7,000 - 15,000	14.0 – (0.300 × Cap ^B)	3.7 — (0.052 х Сар ^в)
DTUD		>15,000	9.5	2.9
PINP		<7,000	9.3	2.7
	Non-Standard Size	7,000 - 15,000	10.8 – (0.213 × Cap ^B)	2.9 – (0.026 × Cap ^B)
		>15,000	7.6	2.5

Table 5 - Baseline Efficiencies for PTAC and PTHP (effective September 20, 2012)¹³⁷

^A Standard size PTAC or PTHP refers to equipment with wall sleeve dimensions having an external wall opening greater than or equal to 16 inches high or greater than or equal to 42 inches wide, and a cross-sectional area greater than or equal to 670 square inches.; Non-standard size refers to PTAC or PTHP equipment with existing wall sleeve dimensions having an external wall opening of less than 16 inches high or less than 42 inches wide, and a cross-sectional area less than 670 square inches.

^B "Cap" means cooling capacity in thousand Btu/h at 95 °F outdoor dry-bulb temperature.

¹³⁷ Standards for Packaged Terminal Air Conditioners and Heat Pumps: http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/45

Prescriptive HVAC: De	emand C	ontrol	Ventilation	า							
Last Revised Date	7/1/201	.3									
MEASURE OVERVIEW											
Description	This me HVAC sy DCV inv controll	asure in /stems olves the d space	nvolves insta to reduce he ne installation ce and the o	allation of den eating/cooling on of CO ₂ sens utdoor ventila	hand cont requirem ors and co tion air a	rol vents v nents v ontrols nd to r	ntilatio when s s to me reduce	n (DCV paces a asure heatin	/) on n are un CO₂ le g/coo	ew high occupie vels in t ling of t	-efficiency d. Typically, he he
	ventilat	ed air d	luring low o	ccupancy perio	ods.				0.	U	
	This me	asure is	s not eligible	for new cons	truction a	pplica	tions fo	or whic	ch DC\	/ is alrea	ady required
	per Sect	tion 50	3.2.5.1 of IE	CC 2009.							
Primary Energy Impact	Electric	• •									
Sector	Comme	rcial									
Program(s)	Busines	s Incen	tive Progran	١							
End-Use	HVAC										
Project Type			ion, Retrofit								
GRUSS ENERGY SAVING	ALGOR	I I HIVIS	UNIT SAVI	NGS)	F 12 /						
Demanu Savings		= /			$F_{kW} \times 12/$			1			
Annual Energy Savings		/r =	Area × vent		$SF_{kW} \times 12$	/ EEK _E		Π _C			
Definitions	Onit			system foonditioned	cnaca har	of:++:r	a fram	the D	$C_{1}/(f+2)$	2	
	Area Vontilat	ionPat	- Ared U	outdoor air w	space bei	rato	hacod c	n char	CV (IL) 0 (CEN4/	f+ ²)
	SE.	IUINAU	– Design	factor is the	average d	loman	d cooli	ng load	le type	e (Crivi)	TEM of
	JFkW		- Saving: ventilate	d air provided	average u I to the co	nditio	u coom	ace (to	a savin	igs hei (
	FFR		- Cooline	a operav effici	ency ratio	of the	neu sp		nont f	rom and	olication
	LLIVEE		form or i	sustomer info	rmation	FFR m	av he e	stimat	ted as	SEER/1	1
			(Btuh/W	att)			ay be c				
	EFLH _c		= Cooling	g equivalent fu	ull load ho	ours (h	rs/yr)				
	12		= Convei	sion: 12 kBtuł	n per ton						
EFFICIENCY ASSUMPTIC	NS										
Baseline Efficiency	No dem	and co	ntrol ventila	tion system in	stalled or	n the F	IVAC u	nits.			
High Efficiency	New hig	gh effici	ency HVAC	unit with dem	and contr	ol ven	tilation	n syster	m inst	alled.	
PARAMETER VALUES											
Measure/Type	Area	Venti	ationRate	SF_{kW}	EER_{EE}	EFI	LH _C	Life ((yrs)	(Cost (\$)
All	Actual	Tab	ble 35 ¹³⁸	0.000433 ¹³⁹	Actual	71	9 ¹⁴⁰	10 ¹	141	\$2,10 \$85)0 (Retrofit) 50 (NC) ¹⁴²
IMPACT FACTORS			•								
Measure/Type	ISF	1	RR _E	RR _D	CF	s	CF	w		FR	SO
All	100	%	99% ¹⁴³	101% ¹⁴³	Table 2	26 ¹⁴⁴	Table	26 ¹⁴⁴	50)% ¹⁴⁵	0.4% ¹⁴⁶

¹³⁸ See Appendix F.

¹⁴⁰ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-2. Values are for the NE-North region.

¹⁴¹ Studies have shown that the typical life of most electronic control devices and sensor is approximately 10 years

¹³⁹ The demand cooling load saving factor is dependent on the amount of ventilated air brought into the conditioned space, which in turns depend on the occupancy within the space. If the space is frequently filled to its designed capacity, then there will not be any demand savings. This is because the system will bring in the corresponding amount of ventilated air required for the occupants, which is the same as the baseline system minimum ventilation. However from our past experience, such spaces are typically occupied 85% to 90% of their designed capacities. Thus, there is an approximate savings of 10% to 15% in the amount of ventilated air brought in. This also translates to about the same amount of demand saved in conditioning the ventilated air.

 ¹⁴² Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011
 ¹⁴³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive

¹⁴³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

Prescriptive HVA	C: Variable Refrigerant Flow								
Last Revised Date	7/1/2014 (New measure in 2015)								
MEASURE OVERVI	EW								
Description	This measure involves the purchase and installation of a new high-efficiency variable refrigerant								
	flow (VRF) AC or heat pump system instead of a new standard efficiency variable refrigerant flow								
	(VRF) AC or heat pump system.								
Energy Impacts ¹⁴⁷	ELECTRIC; NATURAL GAS; HEATING OIL								
Sector	Commercial								
Program(s)	usiness Incentive Program								
End-Use	HVAC								
Decision Type ¹⁴⁸	New Construction, Replace on Burnout/End of Useful life								
GROSS ENERGY SA	VINGS ALGORITHMS (UNIT SAVINGS)								
Demand savings									
	$kW_c = kBtu/hr_{capacity} * \left(\frac{1}{IEFR} - \frac{1}{IEFR}\right)$								
	(1 1 1) 1								
	$kW_h = kBtu_{heatload} * \left(\frac{-}{COP_{hase}} - \frac{-}{COP_{ee}}\right) * \frac{-}{EFLH_h}$								
Annual energy									
savings	$kWh_{c} = kBtu/hr_{capacity} * \left(\frac{1}{IEER_{base}} - \frac{1}{IEER_{ee}}\right) * EFLH_{c}$								
	$kWh_h = kBtu_{hast load} * \left(\frac{1}{1} - \frac{1}{1} \right)$								
	$(COP_{base} COP_{ee})$								
Definitions	h Bto / hr = Cooling capacity of equipment								
Demitions	$\frac{KDUU/III_{capacity}}{UEED} = \text{Integrated energy efficiency ratio for baseline system}$								
	$IEER_{base} = Integrated energy efficiency ratio for VRE system$								
	FELH = Fauivalent full-load cooling hours								
	FFLH = Equivalent full-load cooling hours								
	$kBtu_{hast-load} = (Square feet of building) * (47.4 kBtu/sf149)$								
	COP_{bace} = Coefficient of performance for baseline system								
	COP_{ee} = Coefficient of performance for VRF system at 47°F db/43°F wb outdoor air								
EFFICIENCY ASSUM	1PTIONS								
Baseline	Air cooled variable refrigerant flow unit that meets minimum efficiency standards of 90.1-2007.								
Efficiency									
Efficient Measure	High efficiency variable refrigerant flow unit with IEER of 17 or greater.								

¹⁴⁴ See Appendix B. ¹⁴⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures.

 ¹⁴⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.
 ¹⁴⁷ Select one or more of the following: ELECTRIC; NATURAL GAS; HEATING OIL; PROPANE; WATER; OTHER
 ¹⁴⁸ Select one or more of the following: NEW (e.g. new construction); REPLACEMENT (e.g. replace-on-burnout); RETROFIT

¹⁴⁹ New England average heating load from 2003 CBECs

Prescriptive HVA	Prescriptive HVAC: Variable Refrigerant Flow										
PARAMETER VALUES (DEEMED)											
Measure/Type	kBtu/hr _{capacit}	IEER _{base}	IEER _{ee}	$EFLH_{c}$	$EFLH_{h}$	kBtu _{heat load}	COP_{base}	COP _{ee}			
VRF HVAC System	Actual	12.7 ¹⁵⁰	Actual	829 ¹⁵¹	1600 ¹⁵²	Actual	2.25 ¹⁵³	Actual			
	Conditioned S	Conditioned Space (sq.					Life (vrs)	Cost (\$) ¹⁵⁴			
Measure/Type	ft.)						Life (yrs)	COSt (\$)			
VRF HVAC System	Actual						20	\$0.5648 / sf			
IMPACT FACTORS											
Measure/Type	ISR	RR _E	RR_{D}	(CFs	CFw	FR	SO			
All	100%	99% ¹⁵⁵	101% ¹⁵ 5	Table	e 26 ¹⁵⁶	Table 26 ¹⁵⁶	50% ¹⁴⁵	0.4% ¹⁴⁶			

¹⁵⁰ ANSI/ASHRAE/IES Addenda CE and CP to ANSI/ASHRAE/IESNA 90.1-2007, Table 6.8.1M, VRF Air Cooled (cooling mode) >=65,000 Btu/h and < 135,000 Btu/h ¹⁵¹ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

¹⁵² EMT assumes 1,600 heating full load hours.

¹⁵³ ANSI/ASHRAE/IES Addenda CE and CP to ANSI/ASHRAE/IESNA 90.1-2007, Table 6.8.1M, VRF Air Cooled (heating mode) >=65,000 Btu/h and < 135,000 Btu/h (cooling capacity) 17°F db/15°F wb outdoor air ¹⁵⁴ Average incremental cost over air source heat pump systems, or packaged/split air conditioning systems with an oil- or natural gas-fired boiler

¹⁵⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

¹⁵⁶ See Appendix C.

Ductless Heat Pun	np									
Last Revised Date	7/1/2015	7/1/2015								
MEASURE OVERVIEW	1									
Description	This measure the primary h new DHP equ	involves the pu eating system in ipment may hay	rchase and n new cons /e one (sing	l install structio gle-hea	lation c on, gut- ad) or n	of a high rehab c nultiple	n efficie or planı (multi	ency ductle ned retirer -head) ind	ess heat pump (Di nent/upgrade pro oor units per out	HP) system as ojects. The door unit.
Energy Impacts	Electric	, ,		5	,			,		
Sector	Residential									
Program(s)	Business Ince	ntive Program								
End-Use	Cooling, Heat	ing								
Decision Type	New Construc	ction, Replace o	n Burnout							
GROSS ENERGY SAVIN	NGS ALGORITHI	MS (UNIT SAVIN	NGS)							
Demand Savings	$\Delta kW_{c} = CAP_{c}$	_{COOL} × [(1 / EER	_B) – (1 / El	ER _{EE})]	/ 1,000)				
	$\Delta kW_{H} = CAP$	_{HEAT} × [(1/ HSP	F _B) — (1 / H	ISPF EE	<u>;)] / 1,0</u>	000				
Annual Energy	$\Delta kWh_{c} = CA$	$P_{COOL} \times [(1/SEE)]$	$ER_{B}) - (1 /$	SEER _E	_{EE})] × EI	FLH _{COOL}	/ 1,00	00		
Javings	$\Delta kWh_{H} = CA$	Р _{НЕАТ} × [1 / (HS	PF _B) – 1 /	(HSPF	$(E_{EE})] \times A$	DJ × El	FLH _{HEA}	_T / 1,000		
Definitions	Unit	= 1 ductle	ss heat pu	mp (Dl	HP) syst	tem				
	HSPF _B	= Heating	seasonal p	perforn	mance f	actor of	f the b	aseline DH	P (Btu/Watt-hr)	
	HSPFEE	= Heating	seasonal p	pertorn	nance f	actor of	t the h	igh-efficier	ncy DHP (Btu/Wa	tt-hr)
	CAP _{Cool}	= Rated c	ooling capa	acity of	f the DF	HP (KBtu	i/h)			
	CAP _{Heat}	= Rated h	eating capa	acity of	f the Di	HP (KBti	u/h)			
	SEERB	= Seasona	al energy ef	fficienc	cy ratio	for bas	eline c	ooling unit	(Btu/Watt-hr)	
	SEER _E	= Seasona	al energy ef	fficienc	cy ratio	for high	h-effici	ency DHP	(Btu/Watt-hr)	
	EER _B	= energy of	efficiency r	atio fo	or baseli	ine cool	ling un	it (Btu/Wa	tt-hr)	
	EER _E	= energy (efficiency r	atio fo	or high-e	efficien	cy DHP	(Btu/Wat	t-hr)	
	EFLH _{COOL}	=Equivale	nt full load	hours	s coolin	g				
	EFLH _{HEAT}	=Equivale	nt full load	hours	s heatin	g				
	ADJ	DJ =Adjustment factor to account for realized HSPF during Maine winter								
EFFICIENCY ASSUMPT	IONS									
Baseline Efficiency	The baseline of	case assumes th	e business	would	d be hea	ated wit	th new	ductless h	eat pumps that r	neets Federal
	minimum effi	inimum efficiency requirement for units manufactured on or after January 1, 2015: HSPF=8.2 and								
	SEER=14.0.	ER=14.0.								
Efficient Measure	The high-effic	iency case assu	mes a new	high e	efficienc	y ductle	ess hea	at pump th	at meets minimu	m efficiency
	requirements	for program re	bate: HSPF	=12.0	(single	head), 1	10.0 (m	nulti-head)	. Ductless heat p	oump is sized
	to provide 10	0% of the heat l	oad of the	area s	erved a	t 11 de	grees F	ambient	emperature.	
PARAMETER VALUES	•									
Measure	CAP _{HEAT}	CAP _{COOL}	HSPF _E	HS	SPF _B	SEE	R _E	SEER _B	EER _E	EER _B
DHP Retrofit	Actual	Actual	Actual	8.2	2 ¹⁵⁷	Act	ual	14 ¹⁵⁸	Actual	11.7 ¹⁵⁹
Measure	ADJ	EFLH _{HEAT}	EFLH _{cc}	DOL					Life (yrs)	Cost (\$)
DHP Retrofit	0.79 ¹⁶⁰	2,655 ¹⁶¹	629 ¹⁶	52					18 ¹⁶³	Table 6

¹⁵⁷ Federal minimum efficiency requirement for units manufactured on or after January 1, 2015

¹⁵⁸ DOE standards for Central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75)

¹⁵⁹ DOE standards for Central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75)

¹⁶⁰ Adjustment factor is estimated using the weather bin analysis for Portland, Bangor and Caribou, ME and manufacturer curves to estimate unit efficiency during each weather bin.

¹⁶¹ Heating EFLH is estimated using a weather bin analysis for Portland, Bangor and Caribou, ME and the following assumptions: (1) heat system is supplemented by internal loads equivalent to 30% of the rated cooling capacity of the DHP (2) the DHP serves 100% of space heating load at 11 degrees F, and (3) winter indoor temperature is set at 70 degrees F. The heating EFLH are estimated relative to the rated heating capacity of the DHP.

¹⁶² Cooling EFLH is estimated using a weather bin analysis for Portland, Bangor and Caribou, ME using the same scenario defined for Heating EFLH with summer indoor temperature set to 70 degrees F. The cooling EFLH are estimated relative to the rated cooling capacity of the DHP.

¹⁶³ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 2.

Ductless Heat Pun	np						
IMPACT FACTORS							
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO
DHP – NC/ROB	100% ¹⁶⁴	100% ¹⁶⁵	100% ¹⁶⁵	Table 26 ¹⁶⁶	Table 26 ¹⁶⁶	0% ¹⁶⁷	0% ¹⁶⁷

Table 6 – Measure Cost for DHP Equipment¹⁶⁸

# of Indoor Units per Outdoor Unit	Measure Cost (\$)
1	\$682
2	\$682
3	\$682
4+	\$682

 ¹⁶⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%).
 ¹⁶⁵ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.
 ¹⁶⁶ See Appendix B.
 ¹⁶⁷ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.
 ¹⁶⁸ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

¹⁶⁸ The measure cost is based on program average incremental cost. Measure cost will be refined for number of zones as data becomes available.

Prescriptive HVAC: M	odulating Bu	rner Controls	er Controls for Boilers and Heaters, Code AF1							
Last Revised Date	3/1/2015 (Ne	3/1/2015 (New)								
MEASURE OVERVIEW										
Description	This measure	e is for a non-r	esidentia	l boil	er providing h	eat wit	h a cur	rent turn	down	capacity
	less than 6:1	between the	high firing	g rate	and low firing	g rate. [·]	The mo	dulating	burne	er controls
	will reduce b	urner start up	er start up and shut down and allow the burners to meet load more effectively							
	between the	high firing rat	gh firing rate and the low firing rate. It will also allow for an increased turn							
	down rate to	eliminate sta	rt up and	shut	down when tl	he load	is lowe	er than th	ne low	<i>i</i> firing rate.
Energy Impacts	Natural Gas;	Heating Oil; P	ropane							
Sector	Commercial,	Industrial								
Program(s)	Business Ince	entive Progran	า							
End-Use	Boilers, Spac	e Heating, Pro	cess Heat	ting						
Decision Type	Retrofit									
GROSS ENERGY SAVING	S ALGORITHM	IS (UNIT SAVI	(UNIT SAVINGS)							
Annual energy savings	∆MMBtu/yr	\MMBtu/yr = Ngi * SF * T / 1000								
Definitions	Unit =	= Modulating I	Aodulating burner control installed on a single boiler							
	Ngi =	= Boiler/Heate	Joiler/Heater gas input size (Mbtu/hr)							
	SF =	= Estimate of a	stimate of annual fuel consumption conserved by modulating burner					er		
	Т =	= Hours of ope	ration. (S	pace	heating = Effe	ective f	ull Load	l heating	hours	s (EFLH))
	1000 =	Conversion 1	,000 MBt	u pei	r MMBtu					
EFFICIENCY ASSUMPTIO	NS									
Baseline Efficiency	A baseline bo	oiler high and	high and low firing rate ratio must be a maximum of 6:1; or be subject				oject to			
	loads of less	than 30% of tl	an 30% of the boiler/heater full firing rate for at least 60% of the time.						ne.	
Efficient Measure	A boiler burn	er must have	r must have a turn down rate of 10:1 or greater and be able to effectively						ively	
	modulate the	e burner firing rate between the low and high firing rates.								
PARAMETER VALUES (D	EEMED)									
Measure/Type	SF ¹⁶⁹	T (Proce	ss)	Т (Space Heating	g) ¹⁷⁰	Life (yrs) ¹⁷¹	C	Cost (\$) ¹⁷²
	3%	Hours of Op	ours of Operation 1,600 EFLH 21 \$2.53/Mł					.53/Mbtuh		
IMPACT FACTORS										
Measure/Type	ISR	RR_{E}^{173}	RR_{D}		CFs	C	Fw	FR ¹⁷⁴	4	SO ¹⁷⁵
Retrofit	100%	100%	N/A		NA	N	IA	34%	,	0.4%

¹⁷⁰ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation

- ¹⁷¹ Illinois Statewide Technical Reference Manual version 4.0, measure 4.4.20 High Turndown Burner.
- ¹⁷² Ibid.

¹⁶⁹ Xcel Energy, 2010/2011/2012 Triennial Plan, Minnesota Electric and natural gas Conservation Improvement Program, E,G002/CIP-09-198. Page 474: 80% baseline boiler to 83% overall efficiency with improvement. ¹⁷⁰ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for

Report, June 2012, Table ES 2.

¹⁷³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁷⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business

Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for program overall.

¹⁷⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive HVAC: Bo	oiler Stack He	eat Exchange	Exchanger (Boiler Economizer), Code AF2					
Last Revised Date	3/1/2015 (N	ew)						
MEASURE OVERVIEW								
Description	Boiler stack of water on the which reduce	economizers a e other. The w es the energy	are heat exc vaste heat fr required by	hangers with ho om the stack is u the boiler to he	t flue gas on c used to prehea at the water.	one side a at the bo	and bo iler fe	viler feed ed water,
	There are tw conserve mo the stack ter control prece	vo types of sta ore energy by nperature low autions must	ick heat exc recovering e ver causes t be added, w	hangers: standar even more energ he flue gas to co rhich increases t	rd and conder gy from the flu ndense, addit he cost of the	nsing. Cor ue gas. Bu ional ven unit.	ndensi ut sinc iting a	ing units e reducing nd moisture
Energy Impacts	Natural Gas;	Heating Oil; F	Propane					
Sector	Industrial							
Program(s)	Business Inco	entive Prograi	m					
End-Use	Boiler; Proce	ess Heat Recov	very					
Decision Type	Retrofit							
GROSS ENERGY SAVING	S ALGORITHN	/IS (UNIT SAV	INGS)					
Annual energy savings	∆MMBtu/yr	= CAPINPUT ×	<pre>EFLH x SF/</pre>	1,000				
Definitions	Unit = CAP _{INPUT} = EFLH = SF = 1,000 =	= 1 Boiler retro = Boiler Input = Equivalent F = Estimate of a exchanger = Conversion 2	ofitted to ac Capacity (N ull Load Hea annual gas c 1,000 MBtu	dd stack heat exo IBH = MBtu/h) ating Hours consumption cor per MMBtu	changer nserved by add	ding boile	er stac	ck heat
EFFICIENCY ASSUMPTIC	ONS							
Baseline Efficiency	Assumed to	be a non-cono	densing boil	er with no existi	ng stack heat	exchange	er inst	alled
Efficient Measure	Assumed to	be a boiler wi	th newly ins	stalled stack heat	t exchanger			
PARAMETER VALUES (D	EEMED)							
Measure/Type	CAPINPUT	EFL	H ¹⁷⁶	SF ¹⁷⁷	Life (yrs	5) ¹⁷⁸		Cost (\$)
Standard Economizer	Actual	1,6	500	5%	20		\$1,50	0/MMBtuh ¹⁷⁹
Condensing Economizer	Actual	1,6	500	10%	20		\$2,1	.20/MMBtuh
IMPACT FACTORS	1	100	1			10	1	102
Measure/Type	ISR	RR _E ¹⁸⁰	RR _D	CFs	CF_W	FR ¹⁸		SO ¹⁸²
	100%	100%	N/A	N/A	N/A	34%	6	0.4%

¹⁷⁶ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas - Final Program Evaluation Report, June 2012, Table ES 2. ¹⁷⁷ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks.

¹⁷⁸ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks. The study references NYSERDA Deemed Savings Database, Rev 09-082006. ¹⁷⁹ Ibid.

¹⁸⁰ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁸¹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts

for program overall.

¹⁸² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive HVAC: Bo	oiler Reset/Lo	ockout Contr	ols, Code A	.F3				
Last Revised Date	3/1/2015 (Ne	ew)						
MEASURE OVERVIEW	•							
Description	This measure	e involves the	purchase an	d installation o	f Boiler reset a	nd lockout co	ntrols for a	
	non-resident	ial boiler that	does not cu	rrently have su	ch controls inst	alled.		
	Reset contro	ls achieve ene	rgy savings	by reducing the	hot water sup	ply temperat	ure as a	
	function of o	utdoor air ten	nperature. A	s the site heati	ng load decrea	ses (higher O	AT), the	
	temperature	to which the	boiler must	heat the supply	hot water dec	reases.		
	Lockout cont	rols achieve e	nergy saving	gs by shutting d	own (locking o	ut) the boiler	entirely	
	when the ou	tdoor air tem	perature is h	igh enough to e	ensure there is	no heating lo	ad. For the	
	purposes of t	this measure,	the lockout	temperature sh	ould be set no	higher than 5	55F.	
	Boiler reset of	controls shou	d not be im	plemented in c	onjunction wit	h -or on boile	ers that	
	already have	e- modulating	burner cont	trols.				
Energy Impacts	Natural Gas;	Heating Oil; P	ropane					
Sector	Commercial,	Industrial						
Program(s)	Business Ince	entive Progran	n					
End-Use	Boilers, Spac	e Heating, Pro	cess Heatin	g				
Decision Type	Retrofit							
GROSS ENERGY SAVING	IS ALGORITHM	IS (UNIT SAVI	NGS)					
Annual energy savings	ΔMMBtu/yr	= CAP _{INPUT} × Ef	- LH x SF/ 1,0	00				
Definitions	Unit	= 1 Boiler	retrofitted v	vith reset and lo	ckout controls			
	CAPINPUT	= Boiler In	put Capacity	acity (MBH = MBtu/h)				
	EFLH	= Equivale	nt Full Load	Heating Hours				
	SF	= Estimate	of annual f	uel consumptio	n conserved by	adding boile	r reset	
		controls						
	1,000	= Conversi	on 1,000 M	Btu per MMBtu				
EFFICIENCY ASSUMPTIC	DNS							
Baseline Efficiency	Assumed to I	be a boiler wit	h no boiler	reset or lockout	controls insta	lled.		
Efficient Measure	Assumed to I	be a boiler wit	h newly inst	alled reset and	lockout contro	ols.		
PARAMETER VALUES (D	EEMED)							
Measure/Type	CAPINPUT	EFL	H ¹⁸³	SF ¹⁸⁴	Life (yr	s) ¹⁸⁵	Cost (\$) ¹⁸⁶	
	Actual	1,6	500	8%	20		612/boiler	
IMPACT FACTORS						·		
Measure/Type	ISR	RR_{E}^{187}	RR _D	CFs	CFw	FR ¹⁸⁸	SO ¹⁸⁹	
	100%	100%	N/A	N/A	N/A	34%	0.4%	

¹⁸³ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

¹⁸⁴ Illinois Statewide TRM version 4, measure 4.4.4. <u>http://www.icc.illinois.gov/electricity/TRM.aspx</u>

¹⁸⁵ Ibid.

¹⁸⁶ Ibid.

¹⁸⁷ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁸⁸ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business

Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for program overall.

¹⁸⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive HVAC: O	kygen Tri	m for	r Boilers and	ilers and Heaters, Code AF4						
Last Revised Date	3/1/201	.5 (Ne	w)							
MEASURE OVERVIEW										
Description	This me	asure	is for a non-r	esidential boil	er providing	heat withou	t controls for t	he amount of		
	excess o	oxyger	n provided to	the burner for	r combustion	. The amour	t of oxygen is	dependent on		
	the amo	ount o	f air provided	rovided. The measure involves the installation of an oxygen sensor in th						
	flue exh	aust a	and a fuel val	e and combus	stion air cont	rols to adjus	t from that ser	nsor.		
Energy Impacts	Natural	Gas; H	Heating Oil; P	ropane						
Sector	Comme	rcial, I	Industrial							
Program(s)	Busines	s Ince	ntive Progran	า						
End-Use	Boilers,	Space	e Heating, Pro	cess Heating						
Decision Type	Retrofit									
GROSS ENERGY SAVING	S ALGOR	ITHM	S (UNIT SAVII	NGS)						
Annual energy savings	ΔMMBt	u/yr	= Ngi * SF *	Т / 1000						
Definitions	Unit	=	Single boiler	with oxygen t	rim sensor ar	d control in	stalled			
	Ngi	=	Boiler/Heate	ler/Heater gas input size (Mbtu/hr)						
	SF	=	Estimate of a	mate of annual fuel consumption conserved by adding oxygen tr				trim controls		
	Т	=	Hours of ope	rs of operation. (Space heating = Effective full Load heating				ours (EFLH))		
	1000	=	Conversion 1	nversion 1,000 MBtu per M						
EFFICIENCY ASSUMPTIC	NS									
Baseline Efficiency	A baseli	ne bo	iler utilizes a	utilizes a single point positi		burner com	bustion contro	ol.		
Efficient Measure	A boiler	burne	er will have a	will have an oxygen control		owing the co	ombustion air	to be adjusted		
	based u	pon o	perating para	rating parameters and the c		oxygen senso	ors in the flue (exhaust or		
	other co	ompar	able control	le control scenarios.						
PARAMETER VALUES (D	EEMED)			T						
	Νσί	SE ¹⁹	90 т	(Process)	Т (Space	Life $(vrs)^{192}$	Cost (\$)		
Measure/Type	INGI	31		Heating) ¹⁹¹				COSt (\$)		
	Actual	2%	Actu	al Hours of	1.60		15	\$20,000 ¹⁹³		
	Actual	2/0	Operation 1,000 Li Li 1 15				<i>Ψ</i> 20,000			
IMPACT FACTORS	1		104			1		100		
Measure/Type	ISR		RR_{E}^{194}	RR_{D}	CFs	CF_W	F R ¹⁹⁵	SO ¹⁹⁶		
	100%	6	100%	N/A	N/A	N/A	34%	0.4%		

¹⁹¹ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

¹⁹⁰ United States EPA, Climate Wise: Wise Rules for industrial Efficiency, July 1998.

¹⁹² Michigan Master Database of Deemed Savings - 2014 - Weather Sensitive Commercial, Adjusted for Maine heating hours.

¹⁹³ CODES AND STANDARDS ENHANCEMENT INITIATIVE (CASE) PROCESS BOILERS, 2013 California Building Energy Efficiency Standards, California Utilities Statewide Codes and Standards Team, October 2011, pg. 22

¹⁹⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁹⁵ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business

Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for program overall.

¹⁹⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive HVAC: Bo	ler Turbulator, Code AF5							
Last Revised Date	3/1/2015 (Ne	ew)						
MEASURE OVERVIEW								
Description	This measure	involves the	installation of	turbu	lators in	the tubes of f	iretube boil	ers to help to
	increase heat	se heat transfer efficiency. Normally located inside of only the last pass tubes,						
	turbulators h	elp to recreat	e lost turbule	nce an	nd to also	o extract the m	naximum he	at transfer
	possible befo	ore the gases e	exit the unit.					
Energy Impacts	Natural Gas;	Heating Oil; P	ropane					
Sector	Commercial,	Industrial						
Program(s)	Business Ince	entive Progran	n					
End-Use	Boilers, Space	e Heating, Pro	cess Heating					
Decision Type	Retrofit							
GROSS ENERGY SAVING	S ALGORITHM	IS (UNIT SAVI	NGS)					
Annual energy savings								
	∆MMBtu/yr =	$= CAP_{INPUT} \times EF$	$LH \times OF \times \Delta E$	/ 1000)			
Definitions	Unit =	single boiler	with turbulate	ors ins	talled			
	CAP _{INPUT} =	Boiler input o	capacity (MBt	u/hr)				
	OF =	• Oversize Fac	tor (decimal)					
	ΔE =	Efficiency im	provement. A	n effic	21ency Im	provement of	1% is gaine	d per each 40
		*F reduction	of flue gas ter	npera	ture.			
	EFLH =	Equivalent Fi	UII Load Hours	5 N 4 N 4	D4			
	1000 =	Conversion 1	.,000 MBtu pe	er iviivi	Btu			
Baseline Efficiency	Assumed to t	be a boller wit	n no turbulat		talled.			
Efficient Measure	Assumed to t	be a boller wit	n newly insta	lled tu	rbulator	s in the boiler	tubes.	
PARAIVIETER VALUES (D						98 1:5- ($C_{2} = (c)^{200}$
ivieasure/Type	CAPINPUT	OF	ΔΕ		EFLH	Life (y	rs)	Cost (\$)
	Actual	0.70 ²⁰	¹ Actu	al	1,60	0 20)	\$15 per
	1							turbulator
	ISR	BR ²⁰²	RR			CE	FR ²⁰³	SO ²⁰⁴
	100%	100%					2/10/	0.4%
	10070	100%	N/A		ŊА	N/A	5470	0.470

¹⁹⁷ http://energy.gov/sites/prod/files/2014/05/f16/steam25_firetube_boilers.pdf.

¹⁹⁸ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

¹⁹⁹ CenterPoint Energy, Triennial CIP/DSM Plan 2010-2012, June 1, 2009.

²⁰⁰ http://energy.gov/sites/prod/files/2014/05/f16/steam25_firetube_boilers.pdf

²⁰¹ PA Consulting, KEMA, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, March 22, 2010. This factor implies that boilers are 30% oversized on average.

²⁰² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁰³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business

Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for program overall.

²⁰⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive HVAC: Pr	ogrammable Thermostat, Code AF6								
Last Revised Date	3/1/2015 (N	ew)							
MEASURE OVERVIEW									
Description	This measure	e involves the	purchase and	l installation of	a single pr	ogrammable tł	nermostat		
	connected to	o a single boile	er.						
Energy Impacts	Natural Gas,	Heating Oil, P	ropane						
Sector	Commercial,	Industrial	lustrial						
Program(s)	Business Ince	entive Prograr	n						
End-Use	Space Heatin	ng							
Decision Type	Retrofit								
GROSS ENERGY SAVING	IS ALGORITHM	1S (UNIT SAVI	NGS)						
Annual energy savings	∆MMBtu/yr	= (CAP _{INPUT} × E	FLH × % _{SAVE})	/ 1,000					
Definitions	Unit =	= Single therm	ostat connec	ted to a single	boiler				
	CAP _{INPUT} =	= Boiler input	ler input capacity (MBtu/hr)						
	EFLH =	= Equivalent F	valent Full Load Hours						
	% _{SAVE} =	= Savings perc	igs percentage with installation of a programmable thermostat= C						
	1000	1000 MBtu p) MBtu per MMBtu						
EFFICIENCY ASSUMPTIC	NS								
Baseline Efficiency	Assumed to	be a non-prog	ion-programmable thermostat						
Efficient Measure	Assumed to	be a programi	programmable thermostat with setbacks						
PARAMETER VALUES (D	EEMED)	205 205 205							
Measure/Type	CAPINPU	т Е	FLH ²⁰⁵	% _{SAVE} 200	6	Life (yrs) ²⁰⁷	Cost (\$) ²⁰⁸		
	Actual		1,600	.068		8	\$181		
IMPACT FACTORS									
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO		
	100%	100%	N/A	N/A	N/A	34%	0.4%		

²⁰⁵ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

²⁰⁶ New York Technical Reference Manual, Commercial Programmable Thermostat ESF, revised 10.15.10. While designated as a percentage, the value should be used as a decimal in the savings algorithm.
²⁰⁷ Illinois Statewide Technical Reference Manual version 4.0, measure 4.4.18 – Small Commercial Programmable Thermostats. 100% persistence factor has been

 ²⁰⁷ Illinois Statewide Technical Reference Manual version 4.0, measure 4.4.18 – Small Commercial Programmable Thermostats. 100% persistence factor has been assumed for Maine due to the nature of a new measure and lack of data. <u>http://www.icc.illinois.gov/electricity/TRM.aspx</u>
 ²⁰⁸ Ibid.

Refrigeration Equipment

Prescriptive Refrigera	ation: Evap	orator Fan Motor Control for Cooler/Freezer, Code R10										
Last Revised Date	7/1/2013											
MEASURE OVERVIEW												
Description	This measu	re involve	s the ii	nstalla	ation of e	evapoi	rator far	n cont	rols on re	efrigeration s	yste	ems
	(coolers an	d freezers). The	se sys	tems sav	/e ene	rgy by tu	urning	g off coole	er/freezer ev	арс	orator fans
	while the c	ompresso	r is not	t runn	ing, and	instea	nd turnin	ig on a	an energy	/-efficient 35	wa	tt fan to
	provide air	circulatio	rculation.									
	This measu	re is not e	ligible	for sy	stems a	ready	equippe	ed wit	h ECM ev	aporator far	n mo	otors.
Primary Energy	Electric											
Impact												
Sector	Commercia											
Program(s)	Business In	centive Pr	ogram	1								
End-Use	Refrigeratio	on										
Project Type	New constr	uction, Re	etrofit									
GROSS ENERGY SAVIN	GS ALGORITI	HMS (UNI	T SAVI	NGS)								
Demand Savings	Δ kW	= (kW _{EVA}	$_{\rm P} \times n_{\rm EV}$	_{AP} – k\	$N_{\rm CIRC}$) × (1 – D0	C _{COMP}) ×	BF				
Annual Energy	∆kWh/yr	= (kW _{EV}	$_{AP} \times n_{E'}$	_{VAP} – k	(W _{CIRC}) ×	(1 – D	C _{COMP}) ×	Hour	s imes BF			
Savings												
Definitions	Unit	= 1 evapo	evaporator fan control									
	kW _{EVAP}	= Connect	ed loa	d kW	of each o	evapo	rator far	ו (kW))			
	n _{EVAP}	= Number	nber of controlled ev		d evapo	rator f	fans					
	kW _{CIRC}	= Connect	ed loa	d kW	of the ci	rculati	ing fan (I	kW)				
	DC _{COMP}	= Duty cyc	le of t	he coi	mpresso	r						
	BF	= Bonus fa	actor fo	or red	uced coo	oling lo	oad from	n repla	acing the	evaporator f	an	with a
		lower wat	tage ci	irculat	ting fan v	when	the com	presso	or is not r	unning		
	Hours	= Annual d	Annual operating hours (h		ours (hrs,	/yr)						
EFFICIENCY ASSUMPTI	ONS											
Basalina Efficiency	A refrigerat	tion system equipped with e		with eith	ner sha	aded pol	le or P	SC evapo	prator fans m	oto	rs and no	
baseline Linclency	evaporator	fan contre	an control.									
High Efficiency	A refrigerat	tion system with an evaporator fan control and a smaller wattage circulati				atin	g fan.					
PARAMETER VALUES												
Measure/Type	kW _{EVAP}	n _{evap}	n _{EVAP} kW _{CIRC} DC _{COMP} BF					Hours	Life (yrs	;)	Cost (\$)	
All	0.123 ²⁰⁹	Actual	0.03	5 ²¹⁰	50%	211	Table 3	6 ²¹²	Actual	10 ²¹³		\$2,254 ²¹⁴
IMPACT FACTORS												
Measure/Type	ISR	RR	E	F	RRD	CFs			CFw	FR		SO
All	100%	99%	215	10	1% ²¹⁵	Tabl	e 26 ²¹⁶	Tab	le 26 ²¹⁶	50% ²¹⁷		0.4% 218

²⁰⁹ Based on a weighted average of 80% shaded pole motors at 132 watts and 20% PSC motors at 88 watts. This weighted average is based on discussions with refrigeration contractors and is considered conservative (market penetration estimated at approximately 10%).

²¹⁶ See Appendix C.

²¹⁰ Wattage of fan is used by Freeaire and Cooltrol.

²¹¹ A 50% duty cycle is assumed based on examination of duty cycle assumptions from Richard Traverse, Freeaire Refrigeration (35%-65%), Cooltrol (35%-65%), Natural Cool (70%), Pacific Gas & Electric (58%). Also, manufacturers typically size equipment with a built-in 67% duty factor and contractors typically add another 25% safety factor, which results in a 50% overall duty factor.

²¹² See Appendix F.

²¹³ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

²¹⁴ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

²¹⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

²¹⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures.

Prescriptive Refrige	ration: Door	ition: Door Heater Controls for Cooler/Freezer, Code R20								
Last Revised Date	7/1/2013	7/1/2013								
MEASURE OVERVIEW										
Description	This measure and freezers) based on eith controls are i	This measure involves the installation of door heater controls on refrigeration systems (coolers and freezers). Door heater controls save energy by allowing "on-off" control of the door heaters based on either the relative humidity in the space or the door conductivity level. Door heater controls are not applicable to freezers or coolers with "zero energy" doors								
Primary Energy	Electric									
Impact										
Sector	Commercial									
Program(s)	Business Ince	ntive	Program							
End-Use	Refrigeration									
Project Type	New construe	ction,	Retrofit							
GROSS ENERGY SAVIN	IGS ALGORITH	MS (L	JNIT SAVI	NGS)						
Demand Savings	ΔkW =	kW _{do}	_{or} × n _{door} >	× BF						
Annual Energy	∆kWh/yr	= kW _d	$_{oor} \times n_{door}$	\times BF \times Hours	\times SF					
Savings										
Definitions	Unit= 1 kW_{door} = C n_{door} = NBF= BhhSF= DcorHours= A	door onnec lumbe onus eater eman ntrols nnual	heater cc cted load er of door factor for from ente d savings operatin	ontrol kW of a typic s controlled k reduced coo ering the cool factor to acc g hours (hrs/y	al reach-in coo by sensor ling load from e ler or freezer. ount for cycling yr)	ler or freezer eliminating he g of door heat	door with a hea eat generated b eers after install	ater (kW) y the door ation of		
EFFICIENCY ASSUMPT	IONS	NS								
Baseline Efficiency	A cooler or fr	eezer	glass doo	or that is cont	inuously heate	d to prevent o	condensation.			
High Efficiency	A cooler or fr control.	eezer	glass doo	or with either	a humidity-bas	ed or conduc	tivity-based do	or-heater		
PARAMETER VALUES										
Measure/Type	kW _{door} ²¹⁹		n _{door}	BF	SF	Hours	Life (yrs)	Cost (\$)		
All	0.075 for co 0.200 for fre	oler ezer	Actual	Table 36 ²²⁰	Table 7	8,760 ²²¹	10 ²²²	\$300 ²²³		
IMPACT FACTORS							-			
Measure/Type	ISR		RR _E	RR _D	CFs	CFw	FR	SO		
All	100%	99	9%²²⁴	101% ²²⁴	Table 26 ²²⁵	Table 26 ²²⁵	50% ²²⁶	0.4% ²²⁷		

²¹⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover. ²¹⁹ Based on range of wattages from two manufacturers and metered data (cooler 50-130 W, freezer 200-320 W).

²²⁰ See Appendix F.

²²¹ Refrigeration equipment is assumed to operate continuously.

²²² ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

²²³ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011. ²²⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive

measures.

²²⁵ See Appendix C.

²²⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. 227 Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Control Type	Savings Factor (SF)
Conductivity	80% ²²⁹
Humidity	55% ²³⁰

Table 7 – Savings Factor (SF) for Door Heater Controls²²⁸

 ²²⁸ Based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and manufacturers assumption that 65% of heat generated by door enters the refrigerated case (1+ 0.65/COP).
 ²²⁹ Door Miser savings claim.
 ²³⁰ R.H. Travers' Freeaire Refrigeration, estimated savings.

Prescriptive Refrige	ration: Zero E	inergy	/ Doors	for Coolers	/Freezers, Cod	e R30, R31		
Last Revised Date	7/1/2013							
MEASURE OVERVIEW	1							
Description	This measure	involv	ves the p	ourchase and	l installation of z	ero energy doo	ors for refrige	ration
	systems (coo	lers an	nd freeze	ers) instead o	of standard door	s for new const	truction or re	trofit
	projects. The	e zero (energy o	doors consist	of two or three	panes of glass	and include a	a low-
	conductivity	filler g	as (e.g.,	Argon) and I	ow-emissivity gl	ass coatings. S	tandard cool	er or freezer
	doors are gla	ss doo	rs that t	ypically have	e electric resistar	nce heaters wit	hin the door	frames to
	prevent conc	lensati	ion from	forming on	the glass and to	prevent frost f	ormation on	door frames.
Primary Energy	Electric							
Impact								
Sector	Commercial							
Program(s)	Business Ince	entive l	Program	1				
End-Use	Refrigeration							
Project Type	New constru	ction, l	Retrofit					
GROSS ENERGY SAVIN	IGS ALGORITH	MS (U	NIT SAV	/INGS)				
Demand Savings	ΔkW ÷	= kW _{do}	$_{or} imes BF$					
Annual Energy	Δ kWh/yr	$\Delta kWh/yr = kW_{door} \times BF \times Hours$						
Savings								
Definitions	Unit =	1 zero	energy	door				
	kW _{door} =	Conne	cted loa	d kW of a ty	pical reach-in co	oler or freezer	door with a h	neater (kW)
	BF =	Bonus	factor f	or reduced c	ooling load from	eliminating he	eat generated	by the door
	he	eater f	rom ent	ering the coo	oler or freezer			
	Hours =	Annua	l operat	ing hours (hi	rs/yr)			
EFFICIENCY ASSUMPT	IONS							
Baseline Efficiency	A cooler or fr	eezer	glass do	or that is co	ntinuously heate	d to prevent co	ondensation.	
High Efficiency	A cooler or fr	eezer	glass do	or that prev	ents condensatio	on with multipl	e panes of gla	ass, inert gas,
	and low-e co	atings	instead	of using elec	trically generate	d heat.		
PARAMETER VALUES								
Measure/Type	kW _{door} ²³¹			BF	Hours	Life (yr	s)	Cost (\$)
Cooler (R30)	0.075		Tab	le 36 ²³²	8,760	10 ²³³		\$275 ²³⁴
Freezer (R31)	0.200		Tab	le 36 ²³²	8,760	10 ²³³		\$800 ²³⁴
IMPACT FACTORS	I			1				_
Measure/Type	ISR	F	RR _E	RR _D	CFs	CFw	FR	SO
All	100%	99	1% ²³⁵	101% ²³⁵	Table 26 ²³⁶	Table 26 ²³⁶	50% ²³⁷	0.4% ²³⁸

 ²³¹ Based on range of wattages from two manufacturers and metered data (cooler 50-130 W, freezer 200-320 W).
 ²³² See Appendix F.

²³³ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

²³⁴ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011 ²³⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive

measures.

²³⁶ See Appendix B.

²³⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ²³⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive Refriger	ation: High	Efficiency	Evaporative Fan M	lotors, Code R	40, R41, I	R42	
Last Revised Date	7/1/2013						
MEASURE OVERVIEW							
Description	This measu electronica shaded-po typically co the system or ECM, m construction federal coo	ure involves ally commut le or perma ontain two t n has single- otors. This on walk-in c des and star	the purchase and ins cated motor (ECM) or ment split capacitor (to six evaporator fans phase power, electric measure is not eligib oolers and freezer ap ndards. ²³⁹	stallation of a ne n a refrigeration PSC) evaporato that run nearly city usage can b le for high effici oplications, as h	ew high ef n system, in r fan moto y 24 hours de reduced iency moto igh efficien	ficiency brushless nstead of convent or. Refrigeration so per day, 365 days by choosing brus ors installed in new ncy motors are re	DC fan cional, ystems a year. If hless DC, w quired by
Primary Energy	Electric						
Impact							
Sector	Commercia	al					
Program(s)	Business Ir	ncentive Pro	gram				
End-Use	Refrigerati	on					
Project Type	New const	ruction (ref	rigerated cases only),	Retrofit (refrig	erated cas	ses and walk-in	
	coolers/fre	ezers)					
GROSS ENERGY SAVIN	GS ALGORIT	HMS (UNIT	SAVINGS)				
Demand Savings	Δ kW	$\Delta kW = (kW_{BASE} - kW_{BDC}) \times BF$					
Annual Energy Savings	∆kWh/yr	= (kW _{BASE}	$-kW_{BDC}$) × Hours × D	$OC_{EVAP} \times BF$			
Definitions	Unit	= 1 ECM fa	n				
	kW _{BASE}	= Connecte	ed load kW of the bas	eline evaporato	or fan (kW))	
	kW _{BDC}	= Connecte	ed load kW of a brush	less DC evapor	ator fan (k	W)	
	DC_{Evap}	= Duty cycl	e of the evaporator f	an (%)			
	BF	= Bonus fac	ctor for reduced cooli	ng load			
	Hours	= Annual o	perating hours (hrs/y	r)			
EFFICIENCY ASSUMPTI	ONS						
Baseline Efficiency	A refrigera	tion system	equipped with eithe	r shaded pole c	or PSC eva	porator fan motor	
High Efficiency	A refrigera	tion system	with a brushless DC	fan electronica	lly commu	tated motor (ECN	1).
PARAMETER VALUES				r			
Measure/Type	kW _{BASE} ²⁴⁰	kW _{BDC} ²⁴¹	DC_{Evap}^{242}	BF	Hours 243	Life (yrs) ²⁴⁴	Cost (\$)
Walk-in Cooler/Freezer (R40)	0.123	0.040	100% for cooler, 94% for freezer	Table 36 ²⁴⁵	8,760	15	Table 8
Refrigerated Warehouse (R41)	0.123	0.040	100% for cooler, 94% for freezer	Table 36 ²⁴⁵	8,760	15	Table 8
Merchandise Case (R42)	0.123	0.040	100% for cooler, 94% for freezer	Table 36 ²⁴⁵	8,760	15	Table 8

²³⁹ Energy Independence and Securities Act of 2007, Section 312.

²⁴⁰ Based on a weighted average of 80% shaded pole motors at 132 watts and 20% PSC motors at 88 watts. This weighted average is based on discussions with refrigeration contractors and is considered conservative (market penetration estimated at approximately 10%). ²⁴¹ Based on research for typical power demand high efficiency evaporator fan motors for refrigeration applications (40 Watts).

²⁴² A evaporator fan in a cooler runs all the time, but a freezer only runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day)

²⁴³ Refrigeration equipment is assumed to operate continuously.

²⁴⁴ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

²⁴⁵ See Appendix F.

Prescriptive Refrigera	ation: High E	fficiency Evaj	porative Fan	Motors, Code	e R40, R41, R	42	
IMPACT FACTORS							
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO
All	100%	99% ²⁴⁶	101% ²⁴⁶	Table 26 ²⁴⁷	Table 26 ²⁴⁷	50% ²⁴⁸	0.4% ²⁴⁹

Table 8 – Measure Costs for Evaporative Fan Motors²⁵⁰

Measure Code	Application	Measure Cost
R40	Walk-in Coolers/Freezers	\$60
R41	Refrigerated Warehouses	\$135
R42	Merchandise Cases	\$25

²⁴⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures. ²⁴⁷ See Appendix B.

²⁴⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ²⁴⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover. ²⁵⁰ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the

review of Efficiency Maine projects by GDS Associates, December 2011

Prescriptive Refrigera	tion: Floating	g-Head Press	ure Contro	ls, Code R50, R	851, R5 2		
Last Revised Date	7/1/2013						
MEASURE OVERVIEW							
Description	This measure	involves the	purchase and	installation of	a "floating hea	id pressure co	ntrol"
	condenser sy	stem on a ref	rigeration sys	stem. The floatin	ng-head pressu	ure control ch	anges the
	condensing te	emperatures i	in response t	o different outd	oor temperati	ures so that as	s the outdoor
	temperature	drops, the co	mpressor do	es not have to w	vork as hard to	reject heat fi	om the
	cooler or free	ezer.					
Primary Energy	Electric						
Impact							
Sector	Commercial						
Program(s)	Business Ince	ntive Progran	n				
End-Use	Refrigeration						
Project Type	New construc	ction, Retrofit					
GROSS ENERGY SAVING	GS ALGORITHN	IS (UNIT SAVI	NGS)				
Demand Savings	ΔkW	= HP _{COMPR}	$_{\rm ESSOR} \times \Delta {\rm kWh}$	/hp / FLH			
Annual Energy Savings	Δ kWh/yr	= HP _{COMPRES}	$_{\rm SSOR} imes \Delta kWh/$	hp			
Definitions	HP _{COMPRESSOR}	= Compresso	or horsepowe	er (hp)			
	∆kWh/hp	= Average k\	Nh savings p	er hp (kWh/yr/h	ıp)		
	FLH	= Full load h	ours (hrs/yr)				
EFFICIENCY ASSUMPTIC	ONS						
Baseline Efficiency	A refrigeratio	n system with	nout a floatin	g head pressure	e control syste	m.	
High Efficiency	A refrigeratio	n system with	n a floating h	ead pressure co	ntrol system.		
PARAMETER VALUES							
Measure/Type	HP _{COMPRESSO}	_{DR} Δk	Wh/hp	FLH	Life (y	/rs)	Cost (\$)
All	Actual	Т	able 9	7,221 ²⁵¹	10 ²⁵	52	Table 10
IMPACT FACTORS							
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO
All	100%	99% ²⁵³	101% ²⁵³	Table 26 ²⁵⁴	Table 26 ²⁵⁴	50% ²⁵⁵	0.4% ²⁵⁶

²⁵¹ The refrigeration is assumed to be in operation every day of the year, while savings from floating head pressure control are expected to occur when the temperature outside is below 75 degree F, or 8125 hours. However, due to varied levels of savings at different temperatures, the full load hours are assumed to be 7,221 hours. ²⁵² ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

²⁵³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

²⁵⁴ See Appendix B.

²⁵⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ²⁵⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

		Temperature Range	
Compressor Type	Low Temperature (-35°F to -5°F SST) (Ref. Temp -20°F SST)	Medium Temperature (0°F to 30°F SST) (Ref. Temp 20°F SST)	High Temperature (35°F to 55°F SST) (Ref. Temp 45°F SST)
Standard	695	727	657
Reciprocating			
Discus	607	598	694
Scroll	669	599	509

Table 9 – Floating Head Pressure Control kWh Savings per Horsepower (kWh/yr/hp)²⁵⁷

Table 10 – Measure Costs for Floating Head Pressure Control ²⁵⁸

Measure Code	Description	Measure/Incremental Cost
R50	Controlling 1 Coil	\$518
R51	Controlling 2 Coils	\$734
R52	Controlling 3 Coils	\$984

 ²⁵⁷ Average savings values are based on previous EMT projects.
 ²⁵⁸ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011

Prescriptive Refrigeration	on: Discus & S	croll Comp	ressors, Coo	de R60, R61, R	62, R63, R70), R71, R	72, R73, R74
Last Revised Date	7/1/2013						
MEASURE OVERVIEW							
Description	This measure	involves the	purchase an	d installation of	f a high efficie	ency discu	s or scroll
	compressor ir	n a refrigerat	ion system. 1	The high efficier	ncy discus or s	scroll com	pressor
	increases ope	rating efficie	ncy, and red	uces energy co	nsumption, of	f the syste	em.
Primary Energy Impact	Electric						
Sector	Commercial						
Program(s)	Business Ince	ntive Prograr	n				
End-Use	Refrigeration						
Project Type	New construc	tion, Retrofit					
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVIN	GS)				
Demand Savings	$\Delta kW =$	HP _{COMPRESSOR}	$\times \Delta$ kWh/hp ,	/ FLH			
Annual Energy Savings	Δ kWh/yr =	HP _{COMPRESSOR}	$\times \Delta$ kWh/hp				
Definitions	Unit	= 1 compres	sor				
	HP _{COMPRESSOR}	= Compress	or horsepow	ver (hp)			
	Δ kWh/hp	= kWh per H	IP (kWh/yr/ł	p)			
	FLH	= Full load h	ours (hrs/yr))			
EFFICIENCY ASSUMPTION	S						
Baseline Efficiency	Standard herr	metic or sem	i-hermetic re	eciprocating cor	npressor.		
High Efficiency	High efficienc	y discus or so	croll compres	ssor.			
PARAMETER VALUES		1			1		
Measure/Type	HP _{COMPRESSO}	_R ∆k\	Vh/hp	FLH	Life (y	/rs)	Cost (\$)
All	Actual	Tal	ole 11	5,858 ²⁵⁹	15 ²⁶	50	Table 12
IMPACT FACTORS		·					
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO
All	100%	99% ²⁶¹	101% ²⁶¹	Table 26 ²⁶²	Table 26 ²⁶²	50% ²⁶	³ 0.4% ²⁶⁴

²⁵⁹ Derived from Washington Electric Coop data by West Hill Energy Consultants. The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5858 hours. ²⁶⁰ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

²⁶¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

²⁶² See Appendix B.

²⁶³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ²⁶⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

		Temperature Range	
Compressor Type	Low Temperature (-35°F to -5°F SST) (Ref. Temp -20°F SST)	Medium Temperature (0°F to 30°F SST) (Ref. Temp 20°F SST)	High Temperature (35°F to 55°F SST) (Ref. Temp 45°F SST)
Discus	517	601	652
Scroll	208	432	363

Table 11 - Compressor kWh Savings per Horsepower (kWh/hp)²⁶⁵

Equipment	Measure	Size	Measure/Incremental
Туре	Code	(hp)	Cost
	R60	3	\$650
Discus	R61	4	\$765
Discus	R62	5	\$900
	R63	6	\$1,330
	R70	2	\$400
	R71	3	\$525
Scroll	R72	4	\$600
	R73	5	\$1,000
	R74	6	\$1,300

Table 12 – Measure Costs for Discus and Scroll Compressors²⁶⁶

²⁶⁵ Savings calculations summarized in <Compressor kWh compared.xls>; calculations performed in spreadsheet tool <Refrigeration Compressor Evaluation Vers. 2.01

July 2003.xls>. ²⁶⁶ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

Prescriptive Refrigeration	n: ENERGY STA	AR [®] Reach	in Coolers a	nd Fre	ezers, C	Code R80		
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	This measure	involves the	e purchase and	l instal	lation of	a new ENER	GY STAR® qua	alified
	commercial co	oler (refrig	erator) or free	zer ins	tead of a	a new standa	rd efficiency	cooler or
	freezer.							
Primary Energy Impact	Electric							
Sector	Commercial							
Program(s)	Business Incer	ntive Progra	m					
End-Use	Refrigeration							
Project Type	New construct	tion, Retrof	it					
GROSS ENERGY SAVINGS A	LGORITHMS (U	NIT SAVING	iS)					
Demand Savings	$\Delta kW = A$	∆kWh _{UNIT} / I	FLH					
Annual Energy Savings	$\Delta kWh/yr = \Delta kWh/yr$	∆kWh _{∪NIT}						
Definitions	Unit	= 1 reach-i	in cooler or fre	ezer				
	ΔkWh_{UNIT}	= Average	annual energy	/ saving	gs from l	high-efficienc	y unit (kWh/y	/r)
	FLH	= Full load	hours (hrs/yr)					
EFFICIENCY ASSUMPTIONS								
Baseline Efficiency	Commercial re	each-in refri	gerators or fre	ezers	of at lea	st 15 cubic fe	et interior vo	lume that
	meet the Fede	eral Code re	quirements fo	r minir	num dai	ily energy con	sumption (M	DEC).
High Efficiency	Commercial re	each-in refri	gerators or fre	ezers	of at lea	st 15 cubic fe	et interior vo	lume that
	meet ENERGY	STAR [®] MDI	EC requiremen	its.				
PARAMETER VALUES								
Measure/Type	ΔkWh_{UN}	IT	FLH		L	_ife (yrs)	Co	st (\$)
All	Table 13	3	5,858 ²⁶⁷			12 ²⁶⁸	15	55 ²⁶⁹
IMPACT FACTORS								
Measure/Type	ISR	RR _E	RR _D	(CFs	CFw	FR	SO
All	100%	99% ²⁷⁰	101% ²⁷⁰	Table	e 26 ²⁷¹	Table 26 ²⁷¹	50% ²⁷²	0.4% ²⁷³

²⁶⁷ Derived from Washington Electric Coop data by West Hill Energy Consultants. The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5858 hours.

Environmental Protection Agency, "Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment." Accessed April 8, 2013.

²⁶⁹ Representative cost of participating units based on the following cost data from Vermont TRM 2014: Solid Ref/Freezer Tier 1 \$95 one door; \$125 two door; \$155 three door -- Tier 2 is TWICE Tier 1; Glass Ref Tier 1 \$120 one door; \$155 two door; \$195 three door -- Tier 2 is TWICE Tier 1; Glass Freezer only 1 Tier \$142 <15 cu ft; \$166 15 to 50 cu ft; \$407 > 50 cu ft ²⁷⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive

measures.

²⁷¹ See Appendix B.

²⁷² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. 273 Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Table 13 - Stipulated Annual Energy Consumption and Savings for Commercial Reach-in Coolers and Freezers
--

Equipment Type	Туре	Internal Volume	Annual Energy (U (kW	Annual Energy Savings per Unit	
		feet)	Federal Code	Qualifying Products	(kWh/yr)
	Solid Door	15 ≤ V < 30	1,566	1,107	459
		30 ≤ V < 50	2,205	1,414	790
		50 ≤ V	3,026	1,886	1,140
Coolers/Refrigerators	Glass Door	15 ≤ V < 30	2,205	1,533	672
		30 ≤ V < 50	2,971	2,243	728
		50 ≤ V	3,957	3,057	900
Freezers	Solid Door	15 ≤ V < 30	3,789	2,920	869
		30 ≤ V < 50	6,344	4,615	1,728
		50 ≤ V	9,629	5,916	3,713
	Glass Door	15 ≤ V <	7,656	5,655	2,001
		30			
		30 ≤ V < 50	12,447 8,578		3,869
		50 ≤ V	18,606	11,543	7,063

Note: V = internal volume (ft^3)

²⁷⁴ Stipulated annual energy consumption for baseline and qualifying high efficiency models calculated using the minimum efficiency requirements.

Prescriptive Refrigeration: ENERGY STAR [®] Commercial Ice Makers, Code R90								
Last Revised Date	7/1/2013							
MEASURE OVERVIEW	MEASURE OVERVIEW							
Description	This measure involves the purchase and installation of new self-contained air-cooled ice-makers							
	that meet cur	that meet current ENERGY STAR® or CEE Tier 2 specifications for use in commercial applications						
	(e.g., hospitals	(e.g., hospitals, hotels, food service, and food preservation) instead of standard efficiency ice						
	makers. High efficiency ice-makers typically use high-efficiency compressors and fan motors and							
	thicker insulation. A list of qualified CEE commercial ice makers (as of January 2015) is available							
	at:							
	http://library.	http://library.cee1.org/sites/default/files/library/9558/2015-01_Ice_Machines.xlsx						
Primary Energy	Electric							
Impact								
Sector	Commercial							
Program(s)	Business Incer	ntive Program						
End-Use	Refrigeration							
Project Type	New construc	tion, Retrofit						
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)								
Demand Savings	$\Delta kW = \Delta kWh_{ICEMACHINE} / FLH$							
Annual Energy	$\Delta kWh/yr = \Delta kWh_{ICEMACHINE}$							
Savings								
Definitions	Unit = 1 commercial ice maker							
	$\Delta kWh_{ICEMACHINE}$ = Average annual energy savings from high efficiency ice machine (kWh/yr)							
	Δ FLH = Full load hours (hrs/yr)							
EFFICIENCY ASSUMPT	IONS							
Baseline Efficiency	Commercial ice-maker that meets the federal minimum efficiency requirements.							
High Efficiency	Commercial ice maker that meets current ENERGY STAR [®] or CEE Tier 2 specifications.							
PARAMETER VALUES								
Measure/Type	$\Delta kWh_{ICEMACHINE}$		FLH		Life (yrs)	C	Cost (\$)	
All	Table	e 14	5,858 ²	275	8 ²⁷⁶		\$0 ²⁷⁷	
IMPACT FACTORS	IMPACT FACTORS							
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO	
All	100%	99% ²⁷⁸	101% ²⁷⁸	Table 26	²⁷⁹ Table 26 ²⁷⁹	50% ²⁸⁰	0.4% ²⁸¹	

²⁷⁵ Derived from Washington Electric Coop data by West Hill Energy Consultants. The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5858 hours. ²⁷⁶ Environmental Protection Agency, "Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment." Accessed April 8, 2013.

 ²⁷⁷ Energy Star Commercial Kitchen Equipment Calculator

²⁷⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

²⁷⁹ See Appendix B.

²⁸⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ²⁸¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Equipment	Harvest Rate range (lbs ice per day)	Savings (kWh/yr)
	< 175 lbs ice per day	758
Air Cooled, Self-Contained	> 175 and <= 400 lbs ice per day	2,344
	> 400 and <= 600 lbs ice per day	6,029
	> 600 lbs ice per day	8,045

Table 14 - CEE Specifications for Air-cooled Self-Contained Ice-Makers²⁸²

²⁸² From CEE, High Efficiency Specifications for Commercial Ice Makers effective 07/01/2011, and energystar.gov

Water Heating Equipment

Prescriptive Water Heating: Tankless Water Heater, Code WH1									
Last Revised Date	3/1/2015 (Nev	w)							
MEASURE OVERVIEW									
Description	This measure	This measure involves the purchase and installation of a new tankless (on-demand) natural gas							
	water heater i	nstead of a	a new sto	rage natu	ıral gas w	ater hea	ter.		
Energy Impacts	Natural Gas								
Sector	Commercial, I	ndustrial							
Program(s)	Business Incer	ntive Progr	am						
End-Use	Water Heating	8							
Decision Type	New; Replace	on Burnou	ıt;						
GROSS ENERGY SAVING	S ALGORITHMS	5 (UNIT SA	VINGS)						
Annual energy savings	ΔMMBtu/yr =	[GAL x 8.3	33 x 1 x (T	wн — Т _{in}) у	к (1/ ТЕ _{ВА}	_{se} – 1/ TE	_{ee}) / 1,000,000]	+[SL x	8760 /
	1,000,000]								
Definitions	Unit	= Single wa	ater heate	er					
	GAL = Average amount of hot water consumed annually per water heater (gal/yr)								
	T _{WH} = Water heater setpoint temperature (°F)								
	T _{in} = Average water at the main (°F)								
	TE _{BASE} = Thermal Efficiency for baseline stand alone tank water heater								
	TE _{EE} = Thermal Efficiency for on-demand water heater								
	8.33 = Density of water: 8.33 lb/gallon water								
	1 = Specific heat of water: 1 Btu/lb-°F								
	1,000,000 = Conversion: 1,000,000 Btu/MMBtu								
	Input = Input rating of water heater (Btu/hr)								
	Tank = Tank volume of baseline water heater (gallons)								
	SL ²⁸³ = Maximum standby losses (in Btu/hr) for gas fired storage water heaters								
	(SL=Input/800+110 x $\sqrt{\text{Tank}}$)								
EFFICIENCY ASSUMPTIC	ONS								
Baseline Efficiency	Assumed to be a standard Gas-fired storage water heater with a Federal Minimum Thermal								
	Efficiency and	Federal M	aximum S	Standby L	oss.				
Efficient Measure	Assumed to be a newly installed Tankless Water Heater with a minimum efficiency of 0.82 EF								
PARAMETER VALUES (DEEMED)									
Measure/Type	GAL	Т _{WH}	T _{in}	TE _{BASE}	TE_{EE}	Input	Tank	Life (yrs)	Cost (\$)
<155,000Btuh	Actual ²⁸⁴	126 2 ²⁸⁵	50 8 ²⁸⁶	0.80 ²⁸⁷	Actual	Actual	75	20 ²⁸⁸	\$11/18 ²⁸⁹
≥155,000Btuh	Actual	120.2	50.0	0.00		Actual	150	20	γ1440

²⁸³ From Federal Standard for Commercial Water Heating Equipment, Gas-fired storage water heaters

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/51 ²⁸⁴ Use actual annual hot water gallons per year. Alternatively, default values from the DEER Database (<u>www.deeresources.com</u>) may be used based on building type. ²⁸⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

²⁸⁶ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

²⁸⁷ Federal Standards for Commercial Gas Water Heaters. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/51

²⁸⁸ DEER Database, updated 2/5/2014. http://www.deeresources.com/files/DEER2013codeUpdate/download/DEER2014-EUL-table-update_2014-02-05.xlsx.

²⁸⁹ Incremental cost is shown as calculated by GDS engineering review of available cost data.
Prescriptive Water Heating: Tankless Water Heater, Code WH1											
IMPACT FACTORS											
Measure/Type	ISR	RR_{E}^{290}	RR _D	CFs	CFw	FR ²⁹¹	SO ²⁹²				
	100%	100%	N/A	N/A	N/A	34%	0.4%				

²⁹⁰ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁹¹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business

Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for program overall.

²⁹² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Agricultural Equipment

Prescriptive Agricultural:	New Vap	or-Tight H	ligh	Perform	an	ce T8 Flu	ores	cent Fix	tures		
Last Revised Date	7/1/2013										
MEASURE OVERVIEW											
Description	This meas	ure involv	es tl	he purcha	se a	and install	atio	n of new	High-Perf	ormance T8	(HPT8)
	Lamps and	Lamps and Ballasts with vapor-tight housing.									
Primary Energy Impact	Electric	Electric									
Sector	Commerci	Commercial									
Program(s)	Business Incentive Program										
End-Use	Agriculture										
Project Type	e New construction, Retrofit										
GROSS ENERGY SAVINGS A	/INGS ALGORITHMS (UNIT SAVINGS)										
Demand Savings	ΔkW	$\Delta kW = (Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) / 1000$									
Annual Energy Savings	∆kWh/yr	$\Delta kWh/yr = (Qty_{RASE} \times Watts_{RASE} - Qty_{FE} \times Watts_{FE}) / 1000) \times HoursWk x Weeks$									
Definitions	Unit	Unit = 1 new fixture with 1 to 4 lamps and 1 ballast.									
	Qty _{BASE} = Quantity of baseline fixtures (fixtures)										
	Qty _{EE}	= Quant	tity	of new eff	icie	ent fixture	s (fix	tures)			
	Watts _{BASE}	= Watts	s of l	baseline fi	xtu	re (Watts,	/fixtu	ure)			
	Watts _{EE}	= Watts	s nev	<i>w</i> fixture (Wa	itts/fixture	e)				
	HoursWk	= Week	ly h	ours of eq	uip	ment ope	ratic	on (hrs/w	eek)		
	Weeks	= Week	s pe	r year of e	equ	ipment op	perat	ion (wee	ks/year)		
	1000	= Conve	ersio	on: 1000 W	Vati	ts per kW					
EFFICIENCY ASSUMPTIONS											
Baseline Efficiency	T12 lightir	ng fixtures									
High Efficiency	High-Perfo	ormance T	8 la	mps and b	balla	asts with v	/apo	r-tight ho	ousing.		
PARAMETER VALUES											
Measure/Type	Qty _{BASE}	Qty _{EE}	W	/atts _{BASE}	,	Watts _{EE}	Но	293 293	Weeks	Life (yrs)	Cost (\$)
New Construction	Actual	Actual	Та	ble 30 ²⁹⁴	Та	able 28 ²⁹⁵	A	Actual	Actual	15 ²⁹⁶	\$96 ²⁹⁷
Retrofit	Actual	Actual	Та	ble 30 ²⁹⁴	Ta	able 28 ²⁹⁵	ļ	Actual	Actual	13 ²⁹⁶	\$96 ²⁹⁷
IMPACT FACTORS											
Measure/Type	ISR	RR _E		RR _D		CFs		CF	w	FR	SO
All	100%	99% ²⁹	8	101% ²⁹⁸	8	Table 26	299	Table	26 ²⁹⁹	50% ³⁰⁰	0.4% ³⁰¹

²⁹³ Use actual hours when known. If hours are unknown, use the values from Table 33.

²⁹⁴ See Appendix E. The baseline fixture wattage is determined using the Baseline Fixture Rated Wattage table and the baseline fixture type specified in the project Data Collection and Information form.

²⁹⁵ See Appendix D.

²⁹⁶ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

²⁹⁷ Measure Costs assume 50% retrofit and 50% market opportunity for 1 Lamp fixtures based on cost data provided in Vermont TRM 2014.

²⁹⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

²⁹⁹ See Appendix B.

³⁰⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ³⁰¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive Agricultu	ural: Plate H	eat Exch	ange	rs fo	or Milk Pr	ocessing					
Last Revised Date	7/1/2013										
MEASURE OVERVIEW											
Description	This measu	e involve	es the	purc	hase and i	installation c	of a plate h	eat e	xchan	ger (PHX	() which uses
	tap or well	water to	pre-co	ol m	ilk (to bet	ween 55°F a	nd 70°F) be	efore	the m	ilk ente	rs the
	cooling tanl	c, thereb	y redu	icing	the energ	gy required f	or cooling.	The	PHX n	nay also	use the heat
	extracted fr	om the n	nilk to	preł	neat water	r for domest	ic hot wate	er (Dl	HW) ap	oplicatio	ns.
Primary Energy Impact	Electric										
Sector	Commercia										
Program(s)	Business Inc	centive P	rogran	n							
End-Use	Agriculture										
Project Type	New constr	uction, R	etrofit								
GROSS ENERGY SAVING	SALGORITH	MS (UNI	r savi	NGS)						
Demand Savings	Δ kW	=∆kWh/	'yr / Ho	ours							
Annual Energy Savings	Δ kWh/yr	= ΔkWh_c	омр + /	∆kW	h _{DHW}						
	ΔkWh_{COMP}	= MPD x	365 x	СРм	_{lk} x etr / I	EER / 1,000					
	ΔkWh_{DHW}	kWh _{DHW} = MPD x 365 x CP _{MILK} x ETR x EF _{HX} x DHW / 3,412									
Definitions	Unit	Jnit = 1 plate heat exchanger for milk processing									
	Δ kWh _{COM}	ΔkWh_{COM} = Compressor annual kWh reduction									
	ΔkWh_{DHW}	= Dome	estic h	ot w	ater annu	al kWh redu	ction				
	ETR	= Expec	cted Te	empe	erature Re	eduction (°F)					
	MPD	= Poun	ds of n	nilk p	per Day (l	b/day)					
	CP _{MILK}	= Speci	fic hea	t of	whole mil	k (Btu/lb-°F)					
	EER	= EER o	of cooli	ing s	ystems (Bi	tuh/Watt)					
	Hours	= Annu	al ope	ratin	ng hours (h	nrs/yr)					
	EF _{HX}	= Heat	transf	er ef	ficiency of	f device (%)					
	DHW	= Indica	ator fo	r ele	ctric DHW	/ system					
	365	= Conv	ersion	: 365	days per	year					
	3,412	= Conv	ersion	: 3,4	12 Btu per	⁻ kWh					
	1,000	= Conv	ersion	: 1,00	00 Watts p	per kW					
EFFICIENCY ASSUMPTIC	DNS										
Baseline Efficiency	No plate he	at exchai	nger								
High Efficiency	Plate heat e	xchange	r insta	lled;	may be w	ith or witho	ut DHW he	at re	claim.		
PARAMETER VALUES	,				I						•
Measure/Type	MPD	EER	ET	R	СРмик	Hours	EF _{нх}	D	НW	Life	Cost (\$)
			253	02	0.00303	a a s a 304			0	(yrs)	2 500306
PHX without DHW	Actual	Actual	35°	02	0.93	2,850	NA		0	20305	2,500
PHX with Electric DHW	Actual	Actual	35°	~~	0.93	2,850	59%	-	L.O	20505	2,500
IMPACT FACTORS											
Measure/Type	ISR	RR	E 307		KR _D	CF _S	CFw	308		-K	SO
All	100%	99%	507	1	01% 01%	Table 26 ³⁰⁸	Table 26)	50	% ³⁰³	0.4%

³⁰² Estimated average temperature reduction: PHX typically reduce milk temperatures from 98 degrees Fahrenheit to temperatures to between 55°F and 70°F.

³⁰³ K M Sahay, K. K. Singh, Unit Operations of Agricultural Processing, 2001; page 346.

³⁰⁴ Full load operating hours of 2,850 hours per year assume 6 hours per day of full load operation during milking, with an additional 10% cycle time to maintain tank temperature during non-milking hours.

³⁰⁵ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009. ³⁰⁶ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the

review of Efficiency Maine projects by GDS Associates, December 2011

Prescriptive Agricultural:	Adjustable S	Speed Drives	s for Dairy V	acuum Pump	DS							
Last Revised Date	7/1/2013											
MEASURE OVERVIEW												
Description	This measure	is measure involves the purchase and installation of an Adjustable Speed Drive (ASD) to control										
	the speed of	speed of the dairy vacuum pump.										
	This prescript	is prescriptive measure includes dairy vacuum pumps smaller than 20 HP.										
Primary Energy Impact	Electric											
Sector	Commercial											
Program(s)	Business Inc	entive Progra	m									
End-Use	Agriculture											
Project Type	New constru	uction, Retrof	it									
GROSS ENERGY SAVINGS A	LGORITHMS (UNIT SAVING	S)									
Demand Savings	ΔkW	= HP x 0.746 x	с LF / М _{ЕГЕ} — (С	0.0495 x 2 x #	MilkUnits + 1.	7729)						
Annual Energy Savings	∆kWh/yr	= $\Delta kW \times DRT$	Г x 365									
Definitions	Unit	= New	ASD									
	НР	= Full	load HP rating	g of Vacuum P	ump Motor (ł	p)						
	LF	= Aver	age load facto	or for constan	t speed vacuu	ım pump (%)						
	M _{EFF}	= Mot	or efficiency (%)								
	#MilkUnits	= Num	ber of milk u	nits processed	l per day							
	DRT	= Daily	/ Run Time, H	ours per day o	of vacuum pui	np operation	(hrs/day)					
	365	= Conv	version: 365 d	lays per year								
	0.746	= Conv	version: 0.746	i kW per hp								
	0.0495, 2,	= Regr	ession coeffic	cients for aver	age ASD spee	d and process	ed milk					
		1.7	units									
		72										
		9										
EFFICIENCY ASSUMPTIONS												
Baseline Efficiency	Standard da	iiry vacuum pu	ump operating	g at constant :	speed.							
High Efficiency	Dairy vacuu	m pump with	adjustable sp	eed drive inst	alled.							
PARAMETER VALUES												
Measure/Type	HP	LF	M_{EFF}^{311}	#MilkUnits	DRT	Life (yrs)	Cost (\$)					
All	Table 15	75% ³¹²	Actual	Actual	Actual	15 ³¹³	\$5,322 ³¹⁴					
IMPACT FACTORS												
Measure/Type		ISR RR _E RR _D CF _S CF _W FR SO										
	ISR	RRE	RR _D	CFs	CFw	FR	SO					

³⁰⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

³⁰⁸ See Appendix B.

³⁰⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonighting measures.

Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

³¹¹ Use rated motor efficiency for the actual equipment. If the actual efficiency value is unknown, use the values in Table 15 for existing or new motors. ³¹² Assumed value based on typical operations.

³¹³ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009. ³¹⁴ Average Incremental costs based on interviews with suppliers in Maine, the review of Efficiency Maine projects and incremental costs based from the Efficiency

Vermont TRM Users Manual No. 2010-64, 12/14/10 by GDS Associates, December 2011. ³¹⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

³¹⁶ See Appendix B.

Measure	Size (HP)	Existing Motor	New Motor
MILK: Vacuum Pump with Adjustable Speed Drive Package –			
7.5 HP	7.5	89.5%	91.7%
MILK: Vacuum Pump with Adjustable Speed Drive Package – 10			
HP	10	90.2%	91.7%
MILK: Vacuum Pump with Adjustable Speed Drive Package – 15			
HP	15	91.0%	93.0%
MILK: Vacuum Pump with Adjustable Speed Drive Package – 30			
HP	30	92.4%	94.1%

Table 15 – Standard Motor Efficiency³¹⁹

³¹⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ³¹⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

³¹⁹ Values are the highest minimum efficiency values for each size category from the Energy Policy Act of 1992 (for existing motors) and NEMA Premium Efficiency (for new motors).

Prescriptive Agricultural:	Scroll Compr	essors										
Last Revised Date	7/1/2013											
MEASURE OVERVIEW												
Description	This measure	involve	es the p	purchase and	d installation o	of a high effici	ency scroll c	ompressor				
	for use in the	for use in the milk cooling process.										
Primary Energy Impact	Electric	Electric										
Sector	Commercial											
Program(s)	Business Ince	Business Incentive Program										
End-Use	Agriculture	Agriculture										
Project Type	New construe	ction, Re	etrofit									
GRISS ENERGY SAVINGS AL	GORITHMS (U	NIT SAV	'INGS)									
Demand Savings	$\Delta kW =$	HPCOMPR	RESSOR	× Δ kWh/hp /	/ FLH							
Annual Energy Savings	Δ kWh/yr =	$\Delta kWh/yr = HP_{COMPRESSOR} \times \Delta kWh/hp$										
Definitions	Unit	= 1 nev	w scro	II compresso	or							
	HP _{COMPRESSOR}	= Com	presso	or horsepowe	er (hp)							
	∆kWh/hp	= kWh	saving	gs per HP (kV	Vh/hp/yr)							
	FLH	= Full le	oad ho	ours (hrs/yr)								
EFFICIENCY ASSUMPTIONS												
Baseline Efficiency	Standard her	metic co	ompre	ssor. (Note:	kWh savings b	ased on an av	verage size d	airy farm in				
	Maine with 1	00 milki	ing cov	ws.)								
High Efficiency	High efficiend	cy scroll	comp	ressor.								
PARAMETER VALUES												
Measure/Type	HP _{COMPRESSO}	DR	∆kW	/h/hp	FLH	Life (y	vrs)	Cost (\$)				
All	Actual		43	2 ³²⁰	2,850 ³²¹	15 ³²	2	Table 16				
IMPACT FACTORS												
Measure/Type	ISR	RR	E	RR _D	CFs	CFw	FR	SO				
All	100%	99%	323	101% ³²³	Table 26 ³²⁴	Table 26 ³²⁴	50% ³²⁵	0.4% ³²⁶				

Equipment Type	Size (HP)	Measure/Incremental Cost
	2	\$400
	3	\$525
Scroll Comproscor	5	\$1000
Scroll Compressor	6	\$1,300
	7.5	\$1,538
	10	\$2,051

Table 16 – Measure Costs for Scroll Compressor³²⁷

³²⁰ Average savings value based on Wisconsin Focus on Energy Dairy Audit tool, used for a 100 herd dairy farm in Maine.

³²¹ Full load operating hours of 2,850 hours per year assume 6 hours per day of full load operation during milking, with an additional 10% cycle time to maintain tank temperature during non-milking hours.

³²² PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009. ³²³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive

measures. ³²⁴ See Appendix B.

³²⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ³²⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

³²⁷ Average Incremental costs based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

Prescriptive Agricultura	al: Adjustable	Speed Drive	es on Venti	lation Fans (Po	otato Storago	e Equipn	nent)					
Last Revised Date	7/1/2013											
MEASURE OVERVIEW												
Description	This measure	involves the p	ourchase and	d installation of	an Adjustable	Speed D	rive on potato					
	storage ventila	ation fans. Sa	vings are rea	alized during pe	riods when le	ss than fu	Ill speed is					
	required.											
Primary Energy Impact	Electric	ectric										
Sector	Commercial											
Program(s)	Business Incer	ntive Program	1									
End-Use	Agriculture											
Project Type	New construct	New construction, Retrofit										
GROSS ENERGY SAVINGS	ALGORITHMS	(UNIT SAVINO	GS)									
Demand Savings	$\Delta kW = I$	$= HP_{VFD} \times LF/EF \times (A + B \times SF_F + C \times SF_F^2 - (A + B \times SF_H + C \times SF_H^2))$										
	=	$HP_{VFD} \times 0.71$										
Annual Energy Savings	$\Delta kWh/yr = H$	$HP_{VFD} \times LF/EF$	\times HOU _{HALF} \times	$(A + B \times SF_F + C)$	$\Sigma \times SF_{F}^{2} - A + B$	\times SF _H + C	\times SF _H ²)					
	=	$HP_{VFD} \times 2540$										
Definitions	Unit =	Jnit = 1 new ASD										
	HP _{VFD} =	Total fan hors	sepower cor	nnected to the A	ASD (hp)							
	LF =	Load factor										
	EF =	Motor efficie	ncy									
	HOU _{HALF} =	Hours of use	at half powe	er								
	A, B, C =	Fan Default C	urve Correla	ation Coefficient	ts							
	SF _F =	Speed factor	for full spee	d								
	SF _H =	Speed factor	for half spee	ed								
EFFICIENCY ASSUMPTION	NS											
Baseline Efficiency	Standard vent	ilation fan wi	th no adjust	able speed drive	e installed.							
High Efficiency	Ventilation fai	n with adjusta	able speed d	rive installed.								
PARAMETER VALUES	ſ											
Measure/Type	HP _{VFD}			HOU _{HALF}	Life (y	/rs)	Cost (\$)					
All	Actual			3600 ³²⁸	15 ³²	29	Table 17					
Measure/Type	LF	EF	А	В	С	SF_{F}	SF _H					
All	0.8 ³³⁰	0.91 ³³⁰	0.22 ³³¹	-0.87 ³³¹	1.65 ³³¹	1	0.5					
IMPACT FACTORS												
Measure/Type	ISR	ISR RR _E RR _D CF _S CF _W FR SO										
All	100%	99% ³³²	101% ³³²	Table 26 ³³³	Table 26 ³³³	50% ³³	⁴ 0.4% ³³⁵					

³²⁸ Fans can run at half speed 24/7 from December 1 to April 30 as reported by Steve Belyea, ME Dept of Agriculture, evaluation.

³²⁹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

³³⁰ Program assumption

³³¹ Fan Default Curve Correlation Coefficients for VFD. Variable Frequency Drive Evaluation Protocol, SBW Consulting, Inc., Table 1.

³³² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive measures.

³³³ See Appendix B.

³³⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ³³⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Size (hp)	Measure Cost
3	\$963
5	\$1,105
7.5	\$1,467
10	\$1,745
15	\$2,525
20	\$2,725
	Size (hp) 3 5 7.5 10 15 20

Table 17 – Measure Cost for ASD on Ventilation Fans³³⁶

³³⁶ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011

Prescriptive Agricultural:	High Volum	ne Low Spe	ed I	Fans								
Last Revised Date	7/1/2013											
MEASURE OVERVIEW												
Description	This measu	re involves	the	purchas	se an	nd insta	Ilation	of hig	h volum	ne lo	ow speed	(HVLS) fans
	in a free sta	n a free stall dairy barn to move large amounts of air efficiently (with lower noise).										
Primary Energy Impact	Electric	lectric										
Sector	Commercia	Commercial										
Program(s)	Business Inc	Business Incentive Program										
End-Use	Agriculture	Agriculture										
Project Type	New constr	lew construction, Retrofit										
GROSS ENERGY SAVINGS A	LGORITHMS	ORITHMS (UNIT SAVINGS)										
Demand Savings	Δ kW	= (HP _{BASE} / I	M _{eff,}	_{BASE} – H	P _{HLVS}	/ M _{EFF,F}	_{HVLS}) × C).746 ×	: LF			
Annual Energy Savings	Δ kWh/yr	$= \Delta kW \times Hc$	ours									
Definitions	Unit	Jnit = 1 new HVLS										
	HP _{BASE}	= total cor	nbin	ed hors	sepov	wer of e	existing	g fan m	notors (h	רp)		
	M _{EFF,BASE}	= average	mot	or effic	iency	of exis	sting fa	n mote	ors (%)			
	HP _{HVLS}	= total cor	nbin	ed HP o	of HV	'LS fan	motors	; (hp)				
	M _{EFF,HVLS}	= rated mo	otor	efficien	icy of	f new H	IVLS fa	n (%)				
	LF	= Average	mot	tor load	fact	or						
	Hours	= Annual c	pera	ating ho	ours	(hrs/yr)						
	0.746	= Conversi	ion: (0.746 k	W pe	er hp						
EFFICIENCY ASSUMPTIONS	•											
Baseline Efficiency	1-hp basket	type fans (appr	roximat	ely 1	0-13 fo	ur-foo	t fans r	replaced	d by	1 HVLS).	
High Efficiency	High Volum	e Low Spee	d (H	VLS) ve	ntilat	tion far	ns.					
PARAMETER VALUES												
Measure/Type	HP _{BASE}	M _{EFF,BASE}	H	P _{HVLS}	ME	FF,HVLS	LF	:	Hours		Life (yrs)	Cost (\$)
All	Actual	80% ³³⁷	Ac	ctual	Ac	tual	80%	338	3,660 ³³	9	15 ³⁴⁰	1,165 ³⁴¹
IMPACT FACTORS		-				-						
Measure/Type	ISR	RR _E		RR_{D}		C	Fs	С	Fw		FR	SO
All	100%	99% ³⁴²		101%	342	Table	26 ³⁴³	Table	e 26 ³⁴³	5	0% ³⁴⁴	0.4% ³⁴⁵

³³⁷ Conservative estimate for efficiency of existing 1-2 hp fan motors, based on minimum efficiency requirements in the Energy Policy Act of 2007.

³³⁸ Assumed value based on typical operations.

³³⁹ Fan typically operates 5 months out of the year or approximately 3,660 hours.

³⁴⁰ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009. ³⁴¹ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011 ³⁴² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for prescriptive

measures.

³⁴³ See Appendix C.

³⁴⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive nonlighting measures. ³⁴⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Gas Equipment

Prescriptive Gas: Natu	ural Gas Heat	ing Equipme	nt, Code	G1-G16								
Last Revised Date	7/1/2014											
MEASURE OVERVIEW												
Description	This measure	involves the	purchase a	nd install	ation of	a new hig	h-efficiency na	tural gas				
	furnace, boile	er or unit heat	er instead	of a new	code-cc	ompliant u	nit with equiva	lent capacity.				
Primary Energy Impact	Natural Gas											
Sector	Commercial,	Industrial										
Program(s)	Business Ince	entive Progran	า									
End-Use	Natural Gas											
Project Type	New construc	ction, Retrofit										
GROSS ENERGY SAVING	S ALGORITHM	IS (UNIT SAVI	NGS)									
Annual Energy Savings	ΔMMBtu/yr =	$1MBtu/yr = CAP_{INPUT} \times EFLH \times (EF_{EE} / EF_{BASE} - 1) / 1,000$										
Definitions	Unit	it = 1 new gas heating unit										
	CAPINPUT	AP _{INPUT} = New Equipment input capacity (MBH = kBtu/h)										
	EFLH	FLH = Equivalent full load heating hours										
	EF _{BASE}	= The efficie	ency of the	baseline	equipm	ent (thern	nal efficiency (E	t), combustion				
		efficiency	(Ec), or Ar	nual Fuel	Utilizati	ion Efficier	ncy (AFUE), dep	ending on				
		equipmen	t type and	capacity)								
	EF _{EE}	= The efficie	ency of the	efficient	equipm	ent (same	as EF _{BASE})					
	1,000	= Conversio	n: 1,000 k	Btu per M	MBtu							
EFFICIENCY ASSUMPTIC	ONS											
Baseline Efficiency	Business Ince	entive Progran	n: The base	eline equi	oment r	nust meet	the minimum	efficiency				
	requirements	s specified in f	ederal sta	ndards or	Maine's	s building (code, whicheve	er is more				
	stringent.											
Furnace or Boiler	High efficient	cy natural gas-	-fired furn	ice, boiler	, or uni	t heater.						
PARAMETER VALUES					-			- 1				
Measure/Type	CAPINPUT	EFLH		EF _{BASE}		EF _{EE}	Life (yrs)	Cost (\$)				
All	Actual	1,600 ³⁴	⁵ T	ble 18	A	ctual	20 ³⁴⁷	Table 19				
IMPACT FACTORS												
Measure/Type	ISR	RR _E	RR_{D}	(CFs	CFw	FR	SO				
All	100%	99% ³⁴⁸	NA	1	NA	NA	34% ³⁴⁹	0.4% ³⁵⁰				

³⁴⁶ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas - Final Program Evaluation Report, June 2012, Table ES 2.

³⁴⁷ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009. Appendix B. ³⁴⁸ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³⁴⁹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business

Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for program overall.

³⁵⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Equipment	Measure	Measure Description	Capacity	Baselir	ne Efficie	ency (EF _{EE})
Туре	Code		Range (MBH)	Value	Units	Reference
Furnace	G1	Natural gas-fired air furnace ≤ 300 Mbtu/h, AFUE ≥ 95%	≤ 300	78%	AFUE	[2]
	G2	Natural gas-fired non-condensing hot water boiler, AFUE ≥ 85%, ≤ 300 MBtu/h (ENERGY- STAR-qualified)	≤ 300	82%	AFUE	[2]
Non-	G3	Natural gas-fired non-condensing hot water boiler, thermal efficiency ≥ 85%, >300 MBtu/h and ≤500 MBtu/h	> 300 and ≤ 500	80%	Et	[1]
Condensing Hot water Boiler	G4	Natural gas-fired non-condensing hot water boiler, thermal efficiency ≥ 85%, >500 MBtu/h and ≤1,000 MBtu/h	> 500 and ≤ 1,000	80%	Et	[1]
	G5	Natural gas-fired non-condensing hot water boiler, thermal efficiency ≥ 85%, >1,000 MBtu/h and ≤2,500 MBtu/h	> 1,000 and ≤ 2,500	80%	Et	[1]
	G6	Natural gas-fired non-condensing hot water boiler, thermal efficiency ≥ 85%, >2,500 MBtu/h	> 2,500	82%	Ec	[1]
	G7	Natural gas-fired condensing hot water boiler, AFUE \ge 90%, \le 300 MBtu/h	≤ 300	82%	AFUE	[2]
	G8	Natural gas-fired condensing hot water boiler, thermal efficiency ≥ 90%, >300 MBtu/h and ≤500 MBtu/h	> 300 and ≤ 500	80%	Et	[1]
Condensing Hot Water Boiler	G9	Natural gas-fired condensing hot water boiler, thermal efficiency ≥ 90%, >500 MBtu/h and ≤1,000 MBtu/h	> 500 and ≤ 1,000	80%	Et	[1]
	G10	Natural gas-fired condensing hot water boiler, thermal efficiency ≥ 90%, >1,000 MBtu/h and ≤2,500 MBtu/h	> 1,000 and ≤ 2,500	80%	Et	[1]
	G11	Natural gas-fired condensing hot water boiler, thermal efficiency ≥ 90%, >2,500 MBtu/h	> 2,500	82%	Ec	[1]
	G12	Natural gas-fired steam boiler, AFUE ≥ 82%, ≤ 300 MBtu/h	≤ 300	80%	AFUE	[2]
Steam Boiler	G13	Natural gas-fired steam boiler, thermal efficiency ≥ 79%, >300 MBtu/h and ≤2,500 MBtu/h	> 300 and ≤ 2,500	77%	Et	[1]
	G14	Natural gas-fired steam boiler, thermal efficiency ≥ 80%, >2,500 MBtu/h and ≤10,000 MBtu/h	> 2,500 and ≤ 10,000	77%	Et	[1]
	G15	Low-intensity, infrared, natural gas-fired unit heater	All	80%	Ec	[3]
Unit Heater	G16	Natural gas-fired, warm-air unit heater, thermal efficiency ≥ 90%	All	80%	Ec	[3]

Table 18 – Baseline Efficiency for Natural Gas Heating Equipment

[1] Commercial Packaged Boilers:

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/74

[2] Residential Furnaces and Boilers (furnace standards effective May 1, 2013; boiler standards effective September 1, 2012): <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72</u>

[3] IECC 2009, Table 503.2.3(4)

Equipment Type	Measure Code	Baseline Cost (\$/MBH)	Measure Cost (\$/MBH)	Incremental Cost (\$/MBH) ^A
Furnace	G1	NA	NA	\$9.00
	G2	NA	NA	\$3.13
	G3	NA	NA	\$3.13
Non-Condensing Hot water Boiler	G4	NA	NA	\$3.13
	G5	NA	NA	\$3.13
	G6	NA	NA	\$3.13
	G7	NA	NA	\$1982 + 3.47/MBH
	G8	NA	NA	\$1982 + 3.47/MBH
Condensing Hot Water Boiler	G9	NA	NA	\$1982 + 3.47/MBH
	G10	NA	NA	\$1982 + 3.47/MBH
	G11	NA	NA	\$1982 + 3.47/MBH
		Baseline Cost	Measure Cost	Incremental Cost
		(\$)	(\$)	(\$) ^B
	G12	NA	NA	\$1,200
Steam Boiler	G13	NA	NA	\$3,125
	G14	NA	NA	\$3,800
Linit Heater	G15	NA	NA	\$563
	G16	NA	NA	\$692

Table 19 – Measure Costs for Natural Gas Heating Equipment

^a Based on incremental cost assumptions in the Mid-Atlantic TRM Version 3.0. For boilers, the incremental cost is based on the on the correlation between equipment size and incremental cost in the "Lost Opportunity Incremental Cost" table.

^b Based on incremental cost gathered from various program participating contractors June 2015.

Prescriptive Gas: ENERGY STAR [®] Natural Gas Kitchen Equipment, Code G17 - G22									
Last Revised Date 7/1/2013									
MEASURE OVERVIEW									
Description	This measure	e involves t	he purchase a	nd installation o	of new High Ef	ficiency N	atural Gas		
	Kitchen Equi	oment.							
Primary Energy Impact	Natural Gas								
Sector	Commercial,	Industrial							
Program(s)	Efficiency Ma	aine Busine	ss Incentive P	rogram					
End-Use	Natural Gas								
Project Type	New constru	ction, Retr	ofit						
GROSS ENERGY SAVINGS	ALGORITHMS	(UNIT SAV	NGS)						
Annual Energy Savings	ΔMMBtu/yr	= Δ MMB ⁻	U _{UNIT}						
Definitions	Unit	= 1 new	kitchen equip	ment					
	$\Delta MMBTU_{UNIT}$	= Deem	ed annual MM	IBtu savings per	unit (MMBtu	/yr)			
EFFICIENCY ASSUMPTIONS	S								
Baseline Efficiency	Standard effi	ciency nat	ural gas kitche	n equipment					
High Efficiency	High efficient	cy natural	gas kitchen eq	uipment					
PARAMETER VALUES									
Measure/Type	Δ MMBTU _U	NIT			Life (y	/rs)	Cost (\$)		
All	Table 20				12 ³⁵	51	Table 20		
IMPACT FACTORS									
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO		
All	100%	100% ³⁵²	NA	NA	NA	34% ³⁵³	³ 0.4% ³⁵⁴		

³⁵¹ Energy Protection Agency, Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment. Accessed April 9, 2013. The calculator uses a 12-year measure life value for the life-cycle cost analysis for ovens, fryers, griddles, and steamers. ³⁵² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³⁵³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business

Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for program overall.

³⁵⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Measure			Deemed Sav	Incremental Cost	
Code	Description	Size	∆Therms _{UNIT}	∆MMBtu _{UNIT}	(\$/unit)
G17	Fryer	Any	505	50.5	\$1,120
G18	Broiler	Any	351.5 x Width (feet)	66.1	\$60
G19	Convection oven	Any	306	30.6	\$0
G20	Combination oven	Any	1,103	40.3	\$0
		3 pan	646	153.5	\$260
C21	Stoomor	4 pan	787	204.8	\$420
621	Steamer	5 pan	927	255.9	\$0
		6 pan	1,066	307.1	\$870
		2 feet wide	68	11.1	\$360
		3 feet wide	149	18.5	\$360
G22	Griddle	4 feet wide	229	26.2	\$360
		5 feet wide	309	34.8	\$360
		6 feet wide	389	42.5	\$360

 Table 20 - Natural Gas Kitchen Equipment Measure Detail

³⁵⁵ Savings and measure cost values are based on: Environmental Protection Agency, Savings Calculator for ENERGY STAR[®] Commercial Kitchen Equipment. Accessed June 2015.

Compressed Air Equipment

Prescriptive Compressed	Air: High Eff	iciency Air C	ompressors	, Codes C	-C4					
Last Revised Date	7/1/2013									
MEASURE OVERVIEW	-									
Description	This measur	This measure involves the purchase and installation of a high-efficiency variable frequency								
	drive (VFD) d	or load/no loa	ad air compre	ssor.						
Primary Energy Impact	Electric									
Sector	Commercial	/Industrial								
Program(s)	Business Inc	entive Progra	m							
End-Use	Compressed	l Air								
Project Type	New constru	uction, Retrof	it							
GROSS ENERGY SAVINGS AI	LGORITHMS (UNIT SAVING	S)							
Demand Savings	ΔkW	= HP _{COMPRESSO}	_{DR} × ΔkW/HP							
Annual Energy Savings	∆kWh/yr	= HP _{COMPRESSC}	_{or} × ΔkW/HP >	Hours/We	ek × Week	S				
Definitions	Unit	= 1 new	compressor							
	HP _{COMPRESSOR}	= HP of t	he proposed	compresso	r (hp)					
	∆kW/HP	$\Delta kW/HP$ = Stipulated savings per compressor based on compressor size (kW/hp)								
	Hours/Week	Hours/Week = Total operating hours per week (hrs/week)								
		W = Total c	perating wee	ks per yea	· (week/yr)					
		е								
		е								
		k								
		S								
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency	Inlet modula	ation fixed-sp	eed compress	sor. ³⁵⁶						
High Efficiency	VFD or load	/no-load air c	ompressor.							
PARAMETER VALUES			1							
Measure/Type	HP	∆kW/H	P Hours/	Week	Weeks	L	ife (yrs).	Cost (\$)		
All	Actual	Table 2	1 Actu	ual	Actual		15 ³⁵⁷	\$164/HP ³⁵⁸		
IMPACT FACTORS										
Measure/Type	ISR	RR _E	RR _D	CFs	CFv	/	FR	SO		
All	100%	102% ³⁵⁹	109% ³⁵⁹	Table 26 ³	Table 2	6 ³⁶⁰	39% ³⁶¹	0.4% ³⁶²		

³⁵⁶ Stipulated measure savings derived from 149 actual Efficiency Maine projects – inlet modulation fixed-speed compressors were the dominant baseline machines among this sample of projects.

³⁵⁷ 2005 Measure Life Study prepared for the Massachusetts Joint Utility by Energy Resource Solutions (2005). Measure life study prepared for the Massachusetts Joint Utilities.

³⁵⁸ Based on a correlation between measure cost and compressor horsepower using measure cost data from 149 custom compressed air projects completed by Efficiency Maine between 2007 and 2011.
³⁵⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for custom measures.

³⁵⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation. ³⁶⁰ See Appendix C.

³⁶¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation.

³⁶² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Measure Code	HP	ΔkW/HP
C1	≤ 15	0.2556
C2	16 HP – 30 HP	0.2358
C3	31 HP – 60 HP	0.2154
C4	> 60 HP	0.1861

Table 21 - Stipulated savings per compressor based on compressor size³⁶³

³⁶³ (kW/HP) values are derived from 149 actual custom compressed air projects completed by Efficiency Maine between 2007 and 2011.

Prescriptive Compressed	Prescriptive Compressed Air: High Efficiency Dryers, Codes C10-C16										
Last Revised Date	7/1/2013										
MEASURE OVERVIEW	MEASURE OVERVIEW										
Description	This measur	This measure involves the purchase and installation of high efficiency cycling or VFD-									
	equipped re	frigerated air	dryers.	The d	ryers m	nust be	properly	sized	d and equip	ped with	
	automated o	controls that o	cycle the	e refrig	gerant o	compre	essor (or r	educ	e the outpu	it for VFD	
	modes) in re	sponse to cor	npresse	ed air d	demand	ł.					
Primary Energy Impact	Electric										
Sector	Commercial	/Industrial									
Program(s)	Business Inc	entive Progra	m								
End-Use	Compressed	Air									
Project Type	New constru	iction, Retrofi	t								
GROSS ENERGY SAVINGS A	LGORITHMS	UNIT SAVING	GS)								
Demand Savings	ΔkW	$\Delta kW = CFM_{DRYER} \times \Delta kW/CFM$									
Annual Energy Savings	∆kWh/yr =	= CFM _{DRYER} × <i>A</i>	kW/CFI	Μ×Ηα	ours/W	eek × ۱	Neeks				
Definitions	Unit	= 1 new c	lryer								
		= Full flow	v rated o	capaci	ity of re	efrigera	nted air dr	yer (CFM)		
	∆kW/CFM	= Stipulat	ed inpu	t pow	er redu	ction p	oer full-flo	w ra	ting (CFM) o	of dryer	
		(kW/CFM	l)								
	Hours/Week	a = Total op	perating	hours	s per w	eek (hr	s/week)				
	Weeks	= Total op	perating	; week	s per ye	ear (we	eek/yr)				
EFFICIENCY ASSUMPTIONS	5										
Baseline Efficiency	Non-cycling	refrigerated a	ir dryer								
High Efficiency	High efficien	cy cycling or `	VFD equ	uipped	refrige	rated a	air dryer.				
PARAMETER VALUES											
Measure/Type		∆kW/CF	M H	ours/\	Week	W	eeks	Li	ife (yrs)	Cost (\$)	
All	Actual	Table 2	2	Actu	ial	Ac	tual		15 ³⁶⁴	\$6.54/CFM ³⁶⁵	
ADJUSTED GROSS SAVING	S – IMPACT F/	ACTORS									
Measure/Type	ISR	RR _E	RR	D	CI	Fs	CFw		FR	SO	
All	100%	102% ³⁶⁶	109%	6 ³⁶⁶	Table	26 ³⁶⁷	Table 26	367	39% ³⁶⁸	0.4% ³⁶⁹	

Table 22 - Input power reduction per full-flow rating (CFM) of dryer³⁷⁰

Measure Code	Dryer CFM	∆kW/CFM
C10	< 100	0.00474
C11, C12	100 and < 200	0.00359
C13, C14	200 and < 300	0.00316
C15	300 and < 400	0.00290
C16	>400	0.00272

³⁶⁴ 2005 Measure Life Study prepared for the Massachusetts Joint Utility by ERS

Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation.

³⁶⁵ Based on historical measure cost for EMT projects, provided by Greg Scott, Trask-Decrow Machinery.

³⁶⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation. ³⁶⁷ See Appendix C.

³⁶⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures.

³⁶⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

³⁷⁰ Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2013-2015 Program Years – Plan Version, October 2012, Page 262.

Prescriptive Compressed Air: Receivers, Codes C20-C27								
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	This measur	e involves	the installation	of appropriate	ly sized receiv	ers in a comp	ressed air	
	system in or	der to dim	inish the downs	stream drop in	pressure that	results from s	surges in	
	demand, eli	minating th	ne need for arti	ficially high cor	npressor outp	out pressure.		
	Note: When	there is in	sufficient stora	ge capacity in a	compressed	air system, su	rges in	
	compressed	l air consur	nption cause dr	amatic dips in	the downstrea	am distributio	n system	
	pressure. T	his require	s that compress	or output pres	sure be adjust	ted to artificia	illy high	
	levels in ord	er to susta	in downstream	pressure at the	e desired leve	Ι.		
Primary Energy Impact	Electric							
Sector	Commercial	/Industrial						
Program(s)	Business Inc	entive Prog	gram					
End-Use	Compressed	Air						
Project Type	New constru	uction, Retr	ofit					
GROSS ENERGY SAVINGS A	ALGORITHMS	(UNIT SAV	INGS)					
Demand Savings	ΔkW	= HP _{COMPRI}	$_{\rm ESSOR} \times 0.746 \times \Delta$	psi / 2 × SAVE				
Annual Energy Savings	Δ kWh/yr	= HP _{COMPRE}	$_{\rm SSOR} \times 0.746 \times \Delta$	psi / 2 × SAVE >	< Hours/Week	x × Weeks		
Definitions	Unit	= 1 air r	eceiver					
	HP _{COMPRESSOR}	= Comp	ressor Horsepo	wer (hp)				
	∆psi	= Avera	ge reduction in	system pressu	re (psi)			
	SAVE	= Avera	ge percentage	demand reduct	ion per press	ure drop (%/p	si)	
	Hours/Week	c = Total	compressed air	system operat	ing hours per	week (hrs/we	ek)	
	Weeks	= Total	compressed air	system operat	ing weeks per	∙ year (week/y	/r)	
	0.746	= Conve	ersion: 0.746 kV	V per hp				
EFFICIENCY ASSUMPTIONS	5							
Baseline Efficiency	Compressed	air system	with inadequa	te receiver cap	acity.			
High Efficiency	Compressed	air system	with receivers	installed to ach	nieve appropr	iately sized re	ceiver	
	capacity allo	wing a low	er set point on	system pressu	re.			
PARAMETER VALUES	•						•	
Measure/Type	HP _{COMPRESSO}	Δpsi	Hours/Week	Weeks	SAVE	Life (yrs)	Cost (\$)	
All	Actual	5 ³⁷¹	Actual	Actual	1%/2 psi ³⁷²	10 ³⁷³	Table 23	
ADJUSTED GROSS SAVING	S – IMPACT FA	ACTORS	1	ſ	T	T		
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO	
All	100%	102% ³⁷⁴	109% ³⁷⁴	Table 26 ³⁷⁵	Table 26 ³⁷⁵	39% ³⁷⁶	0.4% ³⁷⁷	

³⁷¹ Compressed air systems generally range in operating pressure from 105psi to 115psi and since most compressed air end uses do not require pressure higher than 100psi, 5psi is a conservative maximum pressure drop available to systems lacking in storage capacity based on achieved results from previous Efficiency Maine projects. ³⁷² Rule of thumb from Paul Shaw at Scales Industrial Technologies and the instructor of the Compressed Air Challenge course: 1% demand reduction for every 2 psi

system pressure reduction ³⁷³ 2012 Technical Reference User Manual, Efficiency Vermont, 12/19/12, pg 193

³⁷⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation. ³⁷⁵ See Appendix C.

³⁷⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation.

³⁷⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Measure Code	Added Capacity (Gallons)	Cost (\$)
C20	60	\$360 ^A
C21	80	\$630
C22	120	\$1,058
C23	200	\$1,418
C24	240	\$1,463
C25	400	\$2,195
NA	500	\$3,360
C26	660	\$5,327
C27	1060	\$7,492

Table 23 - Measure Cost for Compressed Air Receivers³⁷⁸

^A Cost data projected based on correlation between cost and HP for other size levels.

³⁷⁸ Cost data provided by Greg Scott, Trask-Decrow Machinery

Prescriptive Compressed Air: Low Pressure Drop Filters, Codes C30-C33										
Last Revised Date	7/1/2013									
MEASURE OVERVIEW										
Description	This measure involves the purchase and installation of low pressure drop filters in									
	compressed	air system	s to remove oil	particulates or o	other contamii	nates from	the			
	compressed	air at the t	front end of the	e distribution sys	tem. The redu	ction in pre	ssure drop			
	across these	filters trai	nslates directly	to an allowable	reduction in th	ie output p	ressure set			
	point of the	compresso	or.							
Primary Energy Impact	Electric									
Sector	Commercial	/Industrial								
Program(s)	Business Inc	entive Pro	gram							
End-Use	Compressed	Air								
Project Type	New constru	iction, Ret	rofit							
GROSS ENERGY SAVINGS A	LGORITHMS	(UNIT SAV	INGS)							
Demand Savings	ΔkW	= HP _{COMPR}	$_{\rm ESSOR} \times 0.746 \times L$	∆psi / 2 × SAVE						
Annual Energy Savings	Δ kWh/yr	= HP _{COMPRI}	_{ESSOR} × 0.746 × Δ		HoursWk × W	eeks				
Definitions	Unit	= 1 lov	v pressure drop	filter						
	HP _{COMPRESSOR}	= Com	pressor Horsep	ower (hp)						
	Δpsi	= Calc	ulated System F	Pressure Reducti	on per LDP filt	er (psi)				
	SAVE	= Aver	age percentage	e demand reduct	ion per pressu	ire drop (%,	/psi)			
	HoursWk	= Tota	I compressed a	ir system operat	ing hours per	week (hrs/\	veek)			
	Weeks	= Tota	I compressed a	ir system operat	ing weeks per	year (week	:/yr)			
	0.746	= Conv	version: 0.746 k	W per hp						
EFFICIENCY ASSUMPTIONS	5									
Baseline Efficiency	Compressed	air system	n with standard	filters (that resu	Ilt in a large dr	op in press	ure as air			
	passes throu	ıgh filter).								
High Efficiency	Compressed	air system	with low-pres	sure drop filters.						
PARAMETER VALUES										
Measure/Type	HP _{COMPRESSR}	∆psi	SAVE	Hours/Week	Weeks	Life (yrs)	Cost (\$)			
All	Actual	2 ³⁷⁹	1% / 2 psi ³⁸⁰	Actual	Actual	4 ³⁸¹	\$4.60/HP ³⁸²			
ADJUSTED GROSS SAVING	S – IMPACT FA	ACTORS			·					
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO			
All	100%	102% ³⁸³	109% ³⁸³	Table 26 ³⁸⁴	Table 26 ³⁸⁴	39% ³⁸⁵	0.4% ³⁸⁶			

³⁷⁹ Based on information derived from the Compressed Air Challenge and confirmed with Trask-Decrow Machinery

³⁸⁰ Rule of thumb from Paul Shaw at Scales Industrial Technologies and the instructor of the Compressed Air Challenge course: 1% demand reduction for every 2 psi system pressure reduction ³⁸¹ Rhode Island Technical Reference, 2012 Program Year. EMT uses the average of measure life for retrofit (3 years) and for new construction (5 years).

³⁸² Based historical measure cost data for EMT projects, provided by Greg Scott, Trask-Decrow Machinery.

³⁸³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation. ³⁸⁴ See Appendix C.

³⁸⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures.

Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation.

³⁸⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive Compressed Air: Air-Entraining Nozzles, Code C40

Last Revised Date	7/1/2013									
MEASURE OVERVIEW										
Description	This measure	e involves the	purc	hase and	install	ation o	f air-entra	ainin	g nozzles to	reduce the
	consumptior	n of compress	ed ai	r by "blo	<i>w</i> off" r	nozzles	, while ma	ainta	ining perfor	mance by
	inducing the	flow of air su	rrour	nding the	nozzle					
Primary Energy Impact	Electric									
Sector	Commercial/	'Industrial								
Program(s)	Business Ince	entive Progra	m							
End-Use	Compressed	Air								
Project Type	New constru	ction, Retrofi	t							
GROSS ENERGY SAVINGS	ALGORITHMS	(UNIT SAVIN	GS)							
Demand Savings	ΔkW	$= \Delta k W_{NOZZLE}$	< %Us	se						
Annual Energy Savings	∆kWh/yr	$= \Delta kW_{NOZZLE} \times$	×%Us	se × Hour	sWk × '	Weeks				
Definitions	Unit	= 1 nozzle								
	ΔkW_{NOZZLE}	= Average de	mano	d savings	per no	zzle (k\	N)			
	HoursWk	= Weekly hou	urs of	operatio	n (hrs/	week)				
	Weeks	= Weeks per	year	of operat	ion (w	eeks/yr	-)			
	% Use	= % of compr	essor	r operatiı	ng hour	s wher	n nozzle is	in u	se (%)	
EFFICIENCY ASSUMPTION	S									
Baseline Efficiency	Compressed	air system wi	th sta	andard n	ozzles (withou	ıt air-entr	ainir	ng design)	
High Efficiency	Compressed	air system wi	th aiı	r-entrain	ng noz	zles				
PARAMETER VALUES										
Measure/Type	ΔkW_{NOZZLE}	Hours/We	eek	Wee	ks	%	Use	L	ife (yrs)	Cost (\$)
All	Table 24	Actual		Actu	al	5	% ³⁸⁷		10 ³⁸⁸	14 ³⁸⁹
ADJUSTED GROSS SAVING	GS – IMPACT F	ACTORS								
Measure/Type	ISR	RR _E		RR _D	С	Fs	CFw		FR	SO
All	100%	102% ³⁹⁰	10)9 <mark>%³⁹⁰</mark>	Table	26 ³⁹¹	Table 26	391	39% ³⁹²	0.4% ³⁹³

³⁸⁷ Assume 5% based on an average of 3 seconds per minute. Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used. From 2012 Technical Reference User Manual, Efficiency Vermont, 12/19/12, pg 184 ³⁸⁸ 2012 Technical Reference User Manual, Efficiency Vermont, 12/19/12, pg 186

³⁸⁹ 2010 Ohio Technical Reference Manual, Vermont Energy Investment Corp, August 6, 2010 pg 226-227

³⁹⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization rates for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation. ³⁹¹ See Appendix C.

³⁹² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures. Although this measure is now offered under the prescriptive program, it was included in the custom program for the 2011 program impact evaluation.

³⁹³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Table 24 – Stipulated Savings for Standard Nozzle vs. Air-Entraining Nozzle CFM

Size	Standard Nozzle CFM ^A	Air-Entraining Nozzle CFM ⁸	∆kW/CFM ^B	Δ kW_{NOZZLE}^C
1/8"	21	6	0.19	2.85
1/4"	58	11	0.15	7.05

^A Machinery's Handbook, 25th Ed. Ed by Erik Oberg (Et Al). Industrial Press, Inc. ISBN-10: 0831125756

^B 2010 Ohio Technical Reference Manual, Vermont Energy Investment Corp, August 6, 2010 Pg 226-227.

^C $\Delta kW_{NOZZLE} = (Flow_{Standard} - Flow_{AE}) \times \Delta kW/CFM$

Custom Incentives

Custom – Custom Electric Projects						
Last Revised Date	7/1/2013					
MEASURE OVERVIEW						
Description	Business Incentive Program Custom Projects under the Business Incentive Program are energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects with energy conservation measures that are not covered in the prescriptive incentive offerings. Custom project incentives are available for retrofit, replace on burnout, or new installation projects that result in cost-effective electric energy savings. Custom project incentives are only available for projects where the validated first year energy savings, as determined by the Efficiency Maine custom review process, exceeds 35,000 kWh. Large Customer Program Custom Projects under the Large Customer Program are generally targeted for the nearly 500 electric customers in the state with average kW demand of over 400 kW. ³⁹⁴ The program offers incentives for large custom energy efficiency and cost-effective distributed generation projects					
	that offset customer demand on the grid. Custom project incentives under the Large Customer program are designed to reduce kilowatt hour (kWh) consumption or distribution system loading during peak summer demand periods from grid-connected businesses.					
Primary Energy Impact	Electric					
Sector	Commercial and Industrial					
Program(s)	Business Incentive Program, Large Customer Program					
End-Use	See Table 25					
Project Type	New construction, Retrofit					
GROSS ENERGY SAVIN	GS ALGORITHMS					
Demand and Annual Energy Savings	Gross annual energy, summer peak demand, and winter peak demand savings projections for custom projects are calculated using engineering analysis and project specific details pertaining to equipment performance specifications, operating parameters, and load shapes. Calculation of savings for custom projects typically involves one or more of the following methods: whole- building simulation models, weather based bin analysis, other spreadsheet based tools, and generally accepted engineering practice. See additional information in Appendix H, under "Determination of coincident peak demand impact"					
EFFICIENCY ASSUMPTIC	ONS					
Baseline Efficiency	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification, and/or actual recorded data related to input power and output capacity.					
	New Construction: Efficiency criteria for baseline equipment in replacement (replace-on- burnout, natural replacement) and new construction situations is based upon manufacturer's performance specifications and/or independent test data. Baseline efficiency criteria for these projects must meet or exceed any applicable energy codes.					
High Efficiency	Efficiency criteria for the proposed energy efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data.					

³⁹⁴ Although the program targets these larger customers, there is no minimum average demand requirement for participation.

PARAMETER VALUES							
Measure	Parameters for Energy and Demand Savings Calculations					Life (yrs) ³⁹	5 Cost (\$)
	All paramet	All parameters required for energy and demand savings are					
All	determined	determined from project-specific details documented in the project Ta					Actual
	application forms.						
IMPACT FACTORS							
Program	ISR	RR _E	RR _D	CFs	CFw	FR	SO
Business Incentive	100%	102% ³⁹⁶	109% ³⁹⁶	Custom ³⁹⁷	Custom ³⁹⁷	39% ³⁹⁸	0.4% ³⁹⁹
Large Customer	100%	119%400	89% ⁴⁰⁰	Custom ³⁹⁷	Custom ³⁹⁷	22% ⁴⁰⁰	0%400

³⁹⁵ Measure life should be determined by the project engineer. The referenced table provides suggested measure life values for various custom projects. ³⁹⁶ Opinion Dynamics Corporation (OPD), Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, pg. 51

 ³⁹⁷ See Appendix G.
 ³⁹⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures.
 ³⁹⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures.
 ³⁹⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for custom measures.

⁴⁰⁰ Navigant, Impact Evaluation of the Efficiency Maine Trust 2010-2011 Large Projects Grant Program, April 9, 2012, pg.3-5

Custom – Custom Na	Custom – Custom Natural Gas Projects						
Last Revised Date	7/1/2014 (Ne	ew entry for P	Y2015)				
MEASURE OVERVIEW							
Description	Business Incentive Program:						
	Custom Pro	jects under th	e Business Inc	entive Progran	n are energy eff	iciency projects	involving
	complex sit	e-specific app	lications that r	equire detaile	d engineering a	nalysis and/or p	rojects
	with energy	conservation	measures tha	t are not covei	red in the presc	riptive incentive	offerings.
	Custom pro	ject incentive	s are available	for retrofit, re	place on burno	ut, or new instal	lation
	projects that	at result in cos	t-effective nat	ural gas energ	y savings. Custo	m project incen	tives are
	only availab	ole for project	s where the va	lidated first ye	ar energy savin	gs, as determine	ed by the
	Efficiency N	laine custom	review proces	s, exceeds 2,00	0 Therms.		
Primary Energy	Natural Gas	5					
Impact							
Sector	Commercia	l and Industria	al				
Program(s)	Business In	centive Progra	ım				
End-Use	See Table 2	5					
Project Type	New constr	uction, Retrof	it				
GROSS ENERGY SAVIN	GS ALGORITI	IMS					
Annual Energy	Gross annu	al natural gas	savings projec	tions for custo	m projects are o	calculated using	
Savings	engineering	g analysis and	project specifi	c details pertai	ining to equipm	ent performanc	e
	specificatio	ns, operating	parameters, ai	nd load shapes	. Calculation of	savings for cust	om
	projects typically involves one or more of the following methods: whole-building simulation						
	models, weather based bin analysis, other spreadsheet based tools, and generally accepted						
	engineering	g practice.					
EFFICIENCY ASSUMPTI	ONS						
Baseline Efficiency	Retrofit: Ef	ficiency criteri	a for the basel	ine equipment	t in retrofit situa	ations is based c	n the
	operating e	fficiency of th	e existing equi	pment, which	is determined f	rom manufactu	rer's
	performance	ce specificatio	n, and/or actu	al recorded da	ta related to inp	out and output o	apacity.
	New Const	ruction: Efficie	ency criteria fo	r baseline equ	ipment in repla	cement (replace	-on-
	burnout, natural replacement) and new construction situations is based upon manufacturer's						
	performanc	ce specificatio	ns and/or inde	pendent test o	lata. Baseline ef	fficiency criteria	for these
	projects must meet or exceed any applicable energy codes.						
High Efficiency	Efficiency c	riteria for the	proposed ener	rgy efficient eq	uipment are pr	oject specific an	d must be
	supported by manufacturer's performance specifications and/or independent test data.						
PARAMETER VALUES	1					401	1
Measure	Parameters for Energy Savings Calculations Life (yrs) ⁴⁰¹ Cost (\$)				Cost (\$)		
	All paramet	ers required f	or energy and	demand savin	gs are		
All	determined from project-specific details documented in the project Table 25 Actual			Actual			
-	application forms.						
IMPACT FACTORS	1		Γ		ГГ	T	
Program	ISR	RR _E	RR _D	CFs	CF_W	FR	SO
Business Incentive	100%	100%402	100%402	NA	NA	0%403	0%403
					Custor	n – Custom Green Ho	use Gas Projects

 ⁴⁰¹ Measure life should be determined by the project engineer. The referenced table provides suggested measure life values for various custom projects.
 ⁴⁰² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.
 ⁴⁰³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Custom – Custom Green House Gas Projects							
Last Revised Date 7/1/2014 (New entry for PY2015)							
MEASURE OVERVIEW							
Description	Large Customer Program/ Custom Projects: Custom Projects under the Large Customer Program are generally targeted for the nearly 500 electric customers in the state with average kW demand of over 400 kW. ⁴⁰⁴ The program offers incentives for large custom projects that offset greenhouse gas emissions through the installation of more efficient equipment						
Primary Energy	Green House Gas	Green House Gas (CO2_CO_CEC_others)					
Impact		(,	,,,				
Sector	Commercial and I	ndustrial					
Program(s)	Large Customer P	rogram					
End-Use	See Table 25						
Project Type	New construction	, Retrofit					
GROSS ENERGY SAVIN	GS ALGORITHMS	,					
Annual Energy Savings EFFICIENCY ASSUMPTI Baseline Efficiency	IGS ALGORITHMS Gross annual energy, summer peak demand, and winter peak demand savings projections for custom projects are calculated using engineering analysis and project specific details pertaining to equipment performance specifications, operating parameters, and load shapes. Calculation of savings for custom projects typically involves one or more of the following methods: whole- building simulation models, weather based bin analysis, other spreadsheet based tools, and generally accepted engineering practice. See additional information in Appendix H, under "Determination of coincident peak demand impact" IONS Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification, and/or actual recorded data related to input power and output capacity. New Construction: Efficiency criteria for baseline equipment in replacement (replace-on- burnout, natural replacement) and new construction situations is based upon manufacturer's performance specifications and/or independent test data. Baseline efficiency criteria for these						
High Efficiency	Efficiency criteria	for the pr	roposed energ	v efficient eau	ipment are pro	piect specific a	nd must be
riigh Enterency	supported by manufacturer's performance specifications and/or independent test data						
PARAMETER VALUES							
Measure	Parameters for Energy and Demand Savings Calculations Life (vrs) ⁴⁰⁵ Cost (\$)						
All	All parameters required for energy and demand savings are determined from project-specific details documented in the project Table 25 Actual application forms.						
IMPACT FACTORS							
Program	ISR	RR _E	RR _D	CFs	CFw	FR	SO
Large Customer	100% 11	19% ⁴⁰⁶	89% ⁴⁰⁶	NA	NA	22% ⁴⁰⁶	0% ⁴⁰⁶

 ⁴⁰⁴ Although the program targets these larger customers, there is no minimum average demand requirement for participation.
 ⁴⁰⁵ Measure life should be determined by the project engineer. The referenced table provides suggested measure life values for various custom projects.
 ⁴⁰⁶ Navigant, Impact Evaluation of the Efficiency Maine Trust 2010-2011 Large Projects Grant Program, April 9, 2012, pg.3-5

End-Use	Measure Category	New Construction	Retrofit
Custom Lighting	Equipment	15	13
	Controls	10	9
	Chillers/Chiller Plant	20	NA
	HVAC Equipment	15	13
Custom HVAC	EMS & HVAC Controls	15	10
	Heating System Replacement/Upgrade	25	18
	Heating System Maintenance (e.g,. burner optimization, tune-up)	5	5
Custom Motors and VFDs	Equipment	15	13
Custom Compressed Air	Equipment	15	13
	Process Cooling or Heating	15	13
Custom Miscellaneous	Commercial Compressors	15	13
	Industrial Compressors	20	18
	Controls	10	9
	O&M	NA	5
	Retro-commissioning	NA	5
	Envelope	20	20

Table 25 – Measure Life Reference for Custom Projects⁴⁰⁷

⁴⁰⁷ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-2.

Appendix A: Glossary

Definitions are based primarily on the Northeast Energy Efficiency Partnerships (NEEP), Regional Evaluation, Measurement & Verification (EMV) Forum, Glossary of Terms, Version 2.0 (PAH Associates, March 2011), indicated below as: NEEP EMV Glossary.

Adjusted Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated. It adjusts for such factors as data errors, installation and persistence rates, and hours of use, but does not adjust for free ridership or spillover. This can be calculated as an annual or lifetime value. [NEEP EMV Glossary]

Actual: Actual means the project specific value that is recorded in the Project Application/Documentation for this measure.

Algorithm: An equation or set of equations, more broadly a method, used to calculate a number. In this case, it is an estimate of energy use or energy savings tied to operation of a piece of equipment or a system of interacting pieces of equipment. An algorithm may include certain standard numerical assumptions about some relevant quantities, leaving the user to supply other data to calculate the use or savings for the particular measure or equipment. [NEEP EMV Glossary]

Annual Demand Savings: The maximum reduction in electric or gas demand in a given year within defined boundaries. The demand reduction is typically the result of the installation of higher efficiency equipment, controls, or behavioral change. The term can be applied at various levels, from individual projects to energy efficiency programs, to overall program portfolios. [NEEP EMV Glossary]

Annual Energy Savings: The reduction in electricity usage (kWh) or in fossil fuel use in thermal unit(s) from the savings associated with an energy saving measure, project, or program in a given year. [NEEP EMV Glossary]

Average Annual Operating Hours: The annual hours that equipment is expected to operate.

Baseline Efficiency: The assumed efficiency condition of the baseline equipment that is being replaced by the subject energy efficiency measure. It is used to determine the energy savings obtained by the more efficient measure. [NEEP EMV Glossary, edited]

Btu: The standard measure of heat energy. It takes one Btu to raise the temperature of one pound of water one degree Fahrenheit from 58.5 to 59.5 degrees under standard pressure of 30 inches of mercury at or near its point of maximum density. [NEEP EMV Glossary]

Coincident Demand: The demand of a device, circuit or building that occurs at the same time as the peak demand of a system load or some other peak of interest. The peak of interest should be specified. [NEEP EMV Glossary]

Coincidence Factor (CF): The ratio of the average hourly demand during a specified period of time of a group of measures to the sum of their individual maximum demands (or connected loads) within the same period. [NEEP EMV Glossary, edited]

Deemed Savings: An estimate of energy or demand savings for a single unit of an installed energy efficiency measure that (a) has been developed from data sources and analytical methods that are widely considered acceptable for the measure and purpose, and (b) is applicable to the situation being evaluated. A measure with deemed savings will have

the same savings per unit. Individual parameters used to calculate savings and/or savings calculation methods can also be deemed. [NEEP EMV Glossary, edited]

Delta Watts: The difference in the wattage between existing or baseline equipment and its more efficient replacement or installation at a specific time, expressed in watts or kilowatts. [NEEP EMV Glossary]

Demand: The time rate of energy flow. Demand usually refers to the amount of electric energy used by a customer or piece of equipment at a specific time, expressed in kilowatts (kW). [NEEP EMV Glossary]

Energy Star®: A joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy designed to reduce energy use and the impact on the environment. The Energy Star label is awarded to products that meet applicable energy efficiency guidelines and to homes and commercial buildings that meet specified energy efficiency standards. [NEEP EMV Glossary]

Free Rider: A program participant who would have implemented the program measure or practice in the absence of the program. Free riders can be: 1) total, in which the participant's activity would have completely replicated the program measure; 2) partial, in which the participant's activity would have partially replicated the program measure; or 3) deferred, in which the participant's activity would have completely replicated the program measure, but at a future time than the program's timeframe. [NEEP EMV Glossary]

Free Ridership Rate (FR): The percent of energy savings through an energy efficiency program attributable to free riders. [NEEP EMV Glossary, edited]

Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated and unadjusted by any factors. [NEEP EMV Glossary]

Hours of Use (HOU) or Operating Hours: The average number of hours a measure is in use during a specified time period, typically a day or a year. [NEEP EMV Glossary]

Incremental Cost: The difference between the cost of existing or baseline equipment/service and the cost of energy efficient equipment/service. [NEEP EMV Glossary]

In-Service Rate (ISR): The percentage of energy efficiency measures incented by a program that are actually installed and operating. The in-service rate is calculated by dividing the number of measures installed and operating by the number of measures incented by an efficiency program in a defined period of time. [NEEP EMV Glossary]

Kilowatt (kW): A measure of the rate of power used during a preset time period (e.g. minutes, hours, days or months) equal to 1,000 watts. [NEEP EMV Glossary]

Kilowatt-Hour (kWh): A common unit of electric energy; one kilowatt-hour is numerically equal to 1,000 watts used for one hour. [NEEP EMV Glossary]

Lifetime Energy Savings: The energy savings over the lifetime of an installed measure calculated by multiplying the annual energy usage reduction associated with a measure by the expected lifetime of the measure. [NEEP EMV Glossary, edited]

Measure Life: The length of time that a measure is expected to be functional. Measure Life is a function of: (1)

Meter Level Savings: Savings from energy efficiency programs that are at the customer meter or premise level. [NEEP EMV Glossary]

Net Savings: The savings that is attributable to an energy efficiency program. Net savings differs from gross savings because it includes the effects of the free-ridership and/or spillover rates.

Net-to-Gross Ratio (NTG): The ratio of net savings to gross savings. The NTG may be determined from the free-ridership and spillover rates (NTG=1-FR+SO), if available, or it may be a distinct value relating gross savings to the net effect of the program with no separate specification of FR and SO values; it can be applied separately to either energy or demand savings.

Realization Rate (RR): The ratio of savings adjusted for data errors and for evaluated or verified results (verified) to program tracking system savings data (e.g. initial estimates of project savings).

Seasonal Energy Efficiency Ratio (SEER): The total cooling output of a central AC unit in Btus during its normal usage period for cooling divided by the total electrical energy input in watt-hours during the same period, as determined using specified federal test procedures. [NEEP EMV Glossary]

Spillover: Reductions in energy consumption and/or demand caused by the presence of an energy efficiency program, beyond the program-related gross savings of the participants and without financial or technical assistance from the program. There can be participant and/or non-participant spillover. *Participant spillover* is the additional energy savings that occur when a program participant independently installs energy efficiency measures or applies energy saving practices after having participated in the efficiency program as a result of the program's influence. *Non-participant spillover* refers to energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings practices as a result of a program's influence. [NEEP EMV Glossary]

Spillover Rate (SO): Estimate of energy savings attributable to spillover effects expressed as a percent of savings installed by participants through an energy efficiency program. [NEEP EMV Glossary]

Appendix B: Energy Period Factors and Coincidence Factors
Coincidence factors are used to determine the average electric demand savings during the summer and winter on-peak periods as defined by the ISO-NE Forward Capacity Market (FCM). The on-peak demand periods are defined as follows:

- Summer On-Peak: 1:00 to 5:00 PM on non-holiday weekdays in June, July and August.
- <u>Winter On-Peak</u>: 5:00 to 7:00 PM on non-holiday weekdays in December and January.

Energy period factors are used to allocate the annual energy savings into one of the four energy periods. This allocation is performed in order to apply the appropriate avoided cost values in the calculation of program benefits. The four energy periods are defined as follows:⁴⁰⁸

- Winter Peak: 7:00 AM to 11:00 PM on non-holiday weekdays in October through May (8 months).
- Winter Off Peak: 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays in October through May (8 months).
- Summer Peak: 7:00 AM to 11:00 PM on non-holiday weekdays in June through September (4 months).
- Summer Off Peak: 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays in June through September (4 months).

Table 26 includes a listing of measure coincidence factors and energy period allocations.

Measure		Coincidence Factor		Footnoto	Energy Period Factors				Footnoto
	End Use	Winter	Summer	Reference	Winter		Summer		Deference
		On-Peak	On-Peak		Peak	Off Peak	Peak	Off Peak	Reference
Lighting Fixtures – Interior Spaces	Lighting	63.0%	76.0%	409	50.0%	19.0%	23.0%	9.0%	410
Lighting Fixtures – LED Exit Signs	Lighting	100.0%	100.0%	411	30.4%	36.2%	15.6%	17.9%	411
Lighting Fixtures – Exterior Spaces	Lighting	70.2%	3.7%	412	20.5%	50.6%	6.1%	22.8%	412
Lighting Fixtures with Integrated Controls	Lighting	29.0%	37.3%	413	50.0%	19.0%	23.0%	9.0%	410
Lighting Controls – Interior Spaces	Lighting	12.0%	18.0%	414	50.0%	19.0%	23.0%	9.0%	410
Lighting Fixtures – Refrigerated Spaces	Lighting	84.7%	90.8%	415	39.7%	26.7%	19.7%	13.9%	415
Lighting Controls – Refrigerated Spaces	Lighting	30.7%	30.7%	416	30.4%	36.2%	15.6%	17.9%	411

Table 26 – Commercial Coincidence Factors and Energy Period Factors

⁴⁰⁸ http://www.iso-ne.com/support/training/glossary/index-p5.html

⁴⁰⁹ KEMA, C&I Lighting Load Shape Project FINAL Report, July 2011.

⁴¹⁰ Central Maine Power, Non-residential load profile for 3/1/08-2/28/09

⁴¹¹ Values are based on continuous operation. For energy period factors, values may assume that energy savings are evenly distributed across all hours of the year.

⁴¹² Efficiency Vermont TRM 2012, Commercial Outdoor Lighting

⁴¹³ Weighted average of Fixtures and Controls coincidence factors assuming 1/3 of savings are attributable to the fixtures and 2/3 are attributable to the controls.

⁴¹⁴ The Cadmus Group, Inc. (2012). Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

⁴¹⁵ Efficiency Vermont TRM 2012, Grocery/Convenience Store Indoor Lighting

		Coincidence Factor		Footnoto	Energy Period Factors				Footpoto
Measure	End Use	Winter	Summer	Deference	Winter		Summer		Poterenee
		On-Peak	On-Peak	Reference	Peak	Off Peak	Peak	Off Peak	Reference
VFDs on Heating Hot Water Pumps	Motors	100.0%	0.0%	417	53.6%	46.3%	0.0%	0.1%	417
VFDs on Chilled Water Pumps	Motors	0.0%	90.2%	417	30.9%	18.1%	35.9%	15.1%	417
VFDs on Supply Fan	Motors	19.8%	50.8%	417	39.0%	30.5%	21.6%	8.9%	417
VFDs on Return Fan	Motors	28.5%	71.2%	417	39.0%	30.8%	21.4%	8.8%	417
VFDs on Exhaust Fan	Motors	100.0%	37.0%	417	44.4%	22.2%	16.0%	17.4%	417
Unitary Air-Conditioners and Split Systems (< 11.25 tons)	HVAC	0.0%	37.2%	418	17.0%	3.0%	62.0%	18.0%	410
Unitary Air-Conditioners and Split Systems (≥11.25 tons)	HVAC	0.0%	29.0%	418	17.0%	3.0%	62.0%	18.0%	410
Heat Pump Systems (< 11.25 tons)	HVAC	57.0%	37.2%	418	17.0%	3.0%	62.0%	18.0%	410
Heat Pump Systems (≥11.25 tons)	HVAC	57.0%	29.0%	418	17.0%	3.0%	62.0%	18.0%	410
Packaged Terminal Air Conditioners and Heat Pumps	HVAC	57.0%	37.2%	418	17.0%	3.0%	62.0%	18.0%	410
Demand Control Ventilation	HVAC	2.0%	81.0%	410	17.0%	3.0%	62.0%	18.0%	410
Ductless Heat Pump	HVAC	51.0%	6.6%	419	58.1%	38.8%	1.7%	1.4%	419
Variable Refrigerant Flow, New Construction	HVAC	57.0%	37.2%	418	17.0%	3.0%	62.0%	18.0%	410
Modulating Burner Controls for Boilers and Heaters (AF1)	HVAC	NA	NA	420	NA	NA	NA	NA	420
Boiler Stack Heat Exchanger (Boiler Economizer) (AF2)	HVAC	NA	NA	420	NA	NA	NA	NA	420
Boiler Reset/Lockout Controls (AF3)	HVAC	NA	NA	420	NA	NA	NA	NA	420
Oxygen Trim for Boilers and Heaters (AF4)	HVAC	NA	NA	420	NA	NA	NA	NA	420
Boiler Turbulator (AF5)	HVAC	NA	NA	420	NA	NA	NA	NA	420
Programmable Thermostat (AF6)	HVAC	NA	NA	420	NA	NA	NA	NA	420
Evaporator Fan Motor Control for Cooler/Freezer, Code R10	Refrigeration	45.9%	43.0%	421	29.1%	39.5%	13.7%	17.7%	421
Door Heater Controls for Cooler/Freezer, Code R20	Refrigeration	100.0%	100.0%	422	47.6%	52.4%	0.0%	0.0%	422

⁴¹⁶ US DOE, "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting." Refrigerated cases were metered for 12 days to determine savings from occupancy sensors. Assumes that refrigerated freezers and refrigerated coolers will see the same amount of savings from sensors.

⁴¹⁷ Efficiency Vermont TRM 2012. Values used for VFDs on VFD Boiler Feedwater Pumps, 10 HP; VFD Chilled Water Pumps, <10 HP; VFD Supply Fans, <10 HP; VFD Returns Fans, <10 HP; and VFD Exhaust Fans, <10 HP

⁴¹⁸ KEMA, NEEP Unitary HVAC AC Load Shape Project Final Report, June 2011.

⁴¹⁹ Based on weather bin analysis using assumptions defined in ductless heat pump measure entry.

⁴²⁰ Measure applicable to non-electric savings only.

⁴²¹ Efficiency Vermont TRM 2012, Evaporator Fan Control

		Coincidence Factor		Footnoto	Energy Period Factors				Footnote
Measure	End Use	Winter	Summer	Poference	Winter		Summer		Poforonco
		On-Peak	On-Peak	Reference	Peak	Off Peak	Peak	Off Peak	Reference
Zero Energy Doors for Coolers/Freezers, Code R30, R31	Refrigeration	100.0%	100.0%	411	30.4%	36.2%	15.6%	17.8%	410
H.E. Evaporative Fan Motors, Code R40, R41, R42	Refrigeration	100.0%	100.0%	411	30.4%	36.2%	15.6%	17.8%	410
Floating-Head Pressure Controls, Code R50, R51, R52	Refrigeration	100.0%	0.0%	423	33.3%	37.1%	12.8%	16.8%	423
Discus & Scroll Compressors, Code R60-R63, R70-R74	Refrigeration	69.0%	77.2%	424	33.0%	32.6%	17.0%	17.4%	424
Commercial Reach-in Cooler/Refrigerator and Freezers and Ice Makers	Refrigeration	69.0%	77.2%	424	33.0%	32.6%	17.0%	17.4%	424
New Vapor-Tight High Performance T8 Fluorescent Fixtures	Agriculture	63.0%	76.0%	409	50.0%	19.0%	23.0%	9.0%	410
Plate Heat Exchangers for Milk Processing	Agriculture	27.0%	16.1%	425	29.0%	16.4%	31.6%	23.0%	425
Adjustable Speed Drives for Dairy Vacuum Pumps	Agriculture	63.4%	28.7%	426	36.9%	30.1%	18.2%	14.8%	426
Scroll Compressors	Agriculture	91.5%	34.1%	427	43.6%	23.2%	21.7%	11.5%	427
Adjustable Speed Drives on Ventilation Fans, potato				428					127
storage equipment	Agriculture	100%	0%		43.6%	23.2%	21.7%	11.5%	427
HVLS Fans	Agriculture	91.5%	34.1%	427	43.6%	23.2%	21.7%	11.5%	427
High Efficiency Air Compressors, Codes C1-C4	Compressed Air	95.0%	95.0%	429	30.4%	36.2%	15.6%	17.9%	411
High Efficiency Dryers, Codes C10-C16	Compressed Air	95.0%	95.0%	429	30.4%	36.2%	15.6%	17.9%	411
Receivers, Codes C20-C27	Compressed Air	95.0%	95.0%	429	30.4%	36.2%	15.6%	17.9%	411
Low Pressure Drop Filters, Codes C30-C33	Compressed Air	95.0%	95.0%	429	30.4%	36.2%	15.6%	17.9%	411
Air-Entraining Nozzles, Code C40	Compressed Air	95.0%	95.0%	429	30.4%	36.2%	15.6%	17.9%	411
Custom – Compressed Air	Compressed Air	Custom	Custom	430	44.3%	30.3%	15.2%	10.2%	431
Custom - Lighting	Lighting	Custom	Custom	430	44.3%	30.3%	15.2%	10.2%	431
Custom – VFD	Motors	Custom	Custom	430	44.3%	30.3%	15.2%	10.2%	431

⁴²² Efficiency Vermont TRM 2012, Door Heater Control
 ⁴²³ Efficiency Vermont TRM 2012, Floating Head Pressure Control
 ⁴²⁴ Efficiency Vermont TRM 2012, Commercial Refrigeration
 ⁴²⁵ Efficiency Vermont TRM 2012, Farm Plate Cooler/Heat Recover Unit
 ⁴²⁶ Efficiency Vermont TRM 2012, VFD Milk Vacuum Pump
 ⁴²⁷ Efficiency Vermont TRM 2012, Dairy Farm Combined End Uses
 ⁴²⁸ Savings are realized 24/7 Dec 1 – April 30
 ⁴²⁹ Efficiency Vermont TRM 2012, Dairy Farm Combined End Uses

⁴²⁹ Efficiency Vermont TRM 2012, page 13

⁴³⁰ Coincidence factors for custom projects are estimated for each project based on project-specific information. See Appendix G: Custom Projects – Process Documentation for more information.

⁴³¹ Values based on CMP loadshape for "Process C&I".

		Coincidence Factor		Footnoto	Energy Period Factors				Footnoto
Measure	End Use	Winter	Summer	Poforonco	Winter		Summer		Deference
		On-Peak	On-Peak	Reference	Peak	Off Peak	Peak	Off Peak	Reference
Custom – HVAC	HVAC	Custom	Custom	430	44.3%	30.3%	15.2%	10.2%	431
Custom – Miscellaneous	All	Custom	Custom	430	44.3%	30.3%	15.2%	10.2%	431
Large Custom Program – Generic	Various	Custom	Custom	430	44.3%	30.3%	15.2%	10.2%	431
Large Custom Program – Continuous Process	Process	Custom	Custom	430	29.9%	36.7%	15.5%	17.9%	432
Large Custom Program – Single Shift Process	Process	Custom	Custom	430	44.3%	30.3%	15.2%	10.2%	433
Large Custom Program – Solar PV	Solar PV	0	36.3%	434	37.0%	19.0%	29.7%	14.3%	435
Gas Equipment									
Natural Gas Heating Equipment	HVAC	NA	NA	420	NA	NA	NA	NA	420
Natural Gas Kitchen Equipment	Process	NA	NA	420	NA	NA	NA	NA	420

⁴³² Analysis performed by ERS. Winter peak % = (16 hours per day X 243 days during winter X 5 weekdays per week / 7 days per week – 10 holidays in winter) / 8760 hours per year; Winter off-peak % = (243 days during winter X 24 hours per day – Winter peak hours) / 8760 hours per year; Summer peak % = (16 hours per day 122 days during summer X 5 weekdays per week / 7 days per week – 2 holidays in summer) / 8760 hours per year; Summer peak % = (16 hours per day 122 days during summer X 5 weekdays per week / 7 days per week – 2 holidays in summer) / 8760 hours per year; Summer off-peak % = (122 days during summer X 24 hours per day – summer peak hours) / 8760 hours per year.

⁴³³ Analysis performed by ERS. Assumes shift starts after 7 AM and ends before 11 PM in summer and winter on weekdays only. Winter peak % = 243 days in winter / 365 days per year; Summer peak % = 122 days in summer / 365 days per year.

⁴³⁴ Analysis performed by ERS. Factors based on TMY3 solar radiation averaged for Portland, Lewiston-Auburn, Bangor and Presque Isle.

⁴³⁵ Analysis performed by ERS. Factors based on TMY3 solar radiation averaged for Portland, Lewiston-Auburn, Bangor and Presque Isle.

Appendix C: Carbon Dioxide Emission Factors

Fuel	Pounds of CO2 per ⁴³⁶	Unit	
Petrole	um Products		
Distillate Fuel (No. 1, No. 2, No. 4, Fuel Oil and Diesel)	22.384	per gallon	
Jet Fuel	21.095	per gallon	
Kerosene	21.537	per gallon	
Liquefied Petroleum Gases	12.805	per gallon	
Motor Gasoline	19.564	per gallon	
Petroleum Coke	32.397	per gallon	
Petroleum Coke	6768.667	per short ton	
Residual Fuel(No.5 and No. 6 Fuel oil)	26.033	per gallon	
Natural Gas and	Other Gaseous Fuels		
Methane	116.375	per 1000 ft3	
Landfill Gas	Multiple methane factor by the	per 1000 ft3	
	share of the landfill gas methane		
Flare Gas	133.759	per 1000 ft3	
Natural Gas (pipeline)	120.593	per 1000 ft3	
Propane	12.669	per gallon	
	Coal		
Anthracite	5685	per short ton	
Bituminous	4931.30	per short ton	
Sub bituminous	3715.90	per short ton	
Lignite	2791.60	per short ton	
	Other		
Wind	0		
Photovoltaic and Solar Thermal	0		
Tires/Tire – Derived Fuel	6160	per short ton	
Wood and Wood Waste	0		
Municipal Solid Waste	0		
Electricity ⁴³⁷	1.0262	Pounds per kWh	

Table 27. Emission Factors

 ⁴³⁶ From the Energy Information Administration: http://www.eia.doe.gov/oiaf/1605/coefficients.html
 ⁴³⁷ From Avoided Energy Supply Cost in New England, 2013, Synapse Energy Economics Inc.

Appendix D: Lighting Installed and Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)

Appendix D: Lighting Installed and Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)

The TRM shows the installed fixture table that is current at the start of the program year. New measure codes and fixture types may be added during the program year. For the most up to date table of eligible fixture types, see the Measure Code Reference Forms available on the Business Program Incentive Application page of the Efficiency Maine website: http://www.efficiencymaine.com.

Installed Fixture Description	Wattage	Installed Fixture Description	Wattage
CFL - 1/10W	12	T5 - 10-Lamp 4' T5 HO	588
CFL - 1/13W	15	T5 - 1-Lamp 2' T5	19
CFL - 1/16W 2D	18	T5 - 1-Lamp 2' T5 HO	28
CFL - 1/18W	20	 T5 - 1-Lamp 4' T5	32
CFL - 1/21W 2D	22	T5 - 1-Lamp 4' T5 HO	59
CFL - 1/22W	24	T5 - 2-Lamp 2' T5	27
CFL - 1/23W	25	T5 - 2-Lamp 2' T5 HO	55
CFL - 1/26W	28	T5 - 2-Lamp 4' T5	63
CFL - 1/28W	30	T5 - 2-Lamp 4' T5 HO	117
CFL - 1/32W CIRCLINE	34	T5 - 3-Lamp 4' T5 HO	177
CFL - 1/38W 2D	36	T5 - 4-Lamp 4' T5 HO	234
CFL - 1/42W	48	T5 - 5-Lamp 4' T5 HO	294
CFL - 1/44W CIRCLINE	46	T5 - 6-Lamp 4' T5 HO	351
CFL - 1/5W	7	T5 - 8-Lamp 4' T5 HO	468
CFL - 1/7W	9	T8 - 10-Lamp 4' HPT8	279
CFL - 1/9W	11	T8 - 1-Lamp 2' HPT8	17
CFL - 2/11W	26	T8 - 1-Lamp 4' HPT8	28
CFL - 2/13W	30	T8 - 1-Lamp 4' HPT8 (25&28 Watts)	24
CFL - 2/18W	40	T8 - 1-Lamp 4' HPT8 HIGH LMN	39
CFL - 2/26W	54	T8 - 1-Lamp 4' HPT8 LOW PWR	25
CFL - 2/32W	68	T8 - 2-Lamp 2' HPT8	37
CFL - 2/42W	100	T8 - 2-Lamp 4' HPT8	53
CFL - 2/5W	14	T8 - 2-Lamp 4' HPT8 (25&28 Watts)	44
CFL - 2/7W	18	T8 - 2-Lamp 4' HPT8 HIGH LMN	78
CFL - 2/9W	22	T8 - 2-Lamp 4' HPT8 LOW PWR	47
CFL - 3/13W	45	T8 - 3-Lamp 2' HPT8	53
CFL - 3/18W	60	T8 - 3-Lamp 4' HPT8	77
CFL - 3/26W	82	T8 - 3-Lamp 4' HPT8 (25&28 Watts)	67
CFL - 3/32W	114	T8 - 3-Lamp 4' HPT8 HIGH LMN	112
CFL - 3/42W	141	T8 - 3-Lamp 4' HPT8 LOW PWR	73

Table 28 - Installed Fixture Rated Wattage Table (Watts_{EE})⁴³⁸

⁴³⁸ Note that not all installed fixtures are appropriate for each measure. For example, a high efficiency fluorescent bulb cannot be the installed fixture for a refrigerated case LED. The selection of installed fixtures is controlled within effRT based on the measure code selection.

Installed Fixture Description	Wattage (Watts _{ss})	Installed Fixture Description	Wattage (Watts _{EE})
CFL - 3/9W	33		62
CFL - 4/26W	108	T8 - 4-Lamp 4' HPT8	101
CFL - 4/32W	152	T8 - 4-Lamp 4' HPT8 (25&28 Watts)	88
CFL - 4/42W	188	LED 2x2 Recessed Fixture <50W	40
Exit Sign - 2.5W LED	2.5	LED 2x2 Recessed Fixture ≥50W	58
LED A	10	LED 2x4 Recessed Fixture <50W	44
LED BR30	10	LED 2x4 Recessed Fixture ≥50W	63
LED BR40	15	LED 1x4 Recessed Fixture <40W	33
LED D	12	LED 1x4 Recessed Fixture ≥40W	48
LED Flood/Spot <50W	35	LED High/Low Bay Fixtures <150W	105
LED Flood/Spot (50W – 100W)	65	LED High/Low Bay Fixtures ≥150W	236
LED Flood/Spot ≥100W	138	LED Refrigerated Case Light - Horizontal	2.4 W/ft
LED Kit (<50W)	35	T8 - 4-Lamp 4' HPT8 HIGH LMN	156
LED Kit (>100W)	130	T8 - 4-Lamp 4' HPT8 LOW PWR	93
LED Kit (50W-100W)	70	T8 - 5-Lamp 4' HPT8	0
LED MR16	7	T8 - 6-Lamp 4' HPT8	154
LED PAR 20	8	T8 - 6-Lamp 4' HPT8 HIGH LMN	224
LED PAR 30	12	T8 - 6-Lamp 4' HPT8 LOW PWR	134
LED PAR 38	22	T8 - 8-Lamp 4' HPT8	202
LED PG	60	LED Stairway ≤ 40 W	25
LED PL (<50W)	40	LED Stairway > 40 W	58
LED PL (>100W)	150	LED Linear Ambient < 50 W	35
LED PL (50W-100W)	80	LED Linear Ambient 50 W – 100 W	71
LED R	38	LED Linear Ambient > 100 W	122
LED SL (<50W)	40	LED Canopy < 50 W	35
LED SL (>100W)	150	LED Canopy 50 W – 80 W	65
LED SL (50W-100W)	80	LED Canopy > 80 W	138
LED WP	35		

Measure	Installed Fixture Description	Wattage Reduction (SAVE _{EE})
	LED PL (<50W)	88
	LED PL (>100W)	308
C11 LED Street & Device Let Liebte	LED PL (50W-100W)	208
STILLED Street & Parking Lot Lights	LED SL (<50W)	88
	LED SL (>100W)	308
	LED SL (50W-100W)	208
S13 LED Wallpacks	LED WP	93
	LED Canopy <50W	155
S17 LED Canopy	LED Canopy 50W – 80W	223
	LED Canopy > 80W	320
S23 LED Flood/Spot	LED Flood/Spot <50W	60
	LED Flood/Spot 50-100W	230
	LED Flood/Spot ≥100W	327
S31 Refrigerated Case LED Fixture	LED R	62
S31 Refrigerated Case LED Fixture - Horizontal	LED RH	4.6 W/ft
	LED A	50
	LED BR30	50
	LED BR40	45
S41 Screw-In LED Lamps	LED MR16	33
	LED PAR 20	31
	LED PAR 30	28
	LED PAR 38	78

Table 29 - Installed	Fixture Rated	Wattage	Reduction	Table	(SAVE _{ss})
					(EE/

Existing Fixture Description	Wattage	Existing Fixture Description	Wattage
CFL - 11W	11	PSMH - 100W	118
CFL - 13W	13	PSMH - 150W	170
CFL - 27W	27	PSMH - 200W	219
Exit Sign - (2) 20W Incandescent	40	PSMH - 320W	349
Exit Sign - (2) 5W CFL	10	PSMH - 400W	435
Exit Sign - (2) 7.5W Incandescent	15	T12 - 1-Lamp 4' T12	41.7
Exit Sign - (2) 9W CFL	18	T12 - 1-Lamp 4' T12 HO	84
Halogen - 20W	20	T12 - 1-Lamp 5' T12 HO	97
Halogen - 50W	50	T12 - 1-Lamp 6' T12 HO	113
HPS - 100W	138	T12 - 2-Lamp 4' T12	70.7
HPS - 150W	188	T12 - 2-Lamp 4' T12 HO	131
HPS - 250W	295	T12 - 2-Lamp 5' T12 HO	170
HPS - 400W	465	T12 - 2-Lamp 6' T12 HO	193
HPS - 50W	65	T12 - 2-Lamp 8' T12	120.6
HPS - 70W	95	T12 - 2-Lamp 8' T12 HO	197.9
Incandescent - 100W	100	T12 - 2-Lamp U T12	72.5
Incandescent - 40W	40	T12 - 3-Lamp 4' T12	112.3
Incandescent - 60W	60	T12 - 4-Lamp 4' T12	141.2
Incandescent - 65W	65	T8 - 1-Lamp 4' T8	31
Incandescent - 75W	75	T8 - 1-Lamp 4' T8 HO	53
MH - 1000W	1075	T8 - 1-Lamp 5' T8 HO	62
MH - 100W	128	T8 - 1-Lamp 6' T8 HO	80
MH - 150W	190	T8 - 2-Lamp 4' T8	59
MH - 175W	215	T8 - 2-Lamp 4' T8 HO	100
MH - 200W	232	T8 - 2-Lamp 5' T8 HO	116
MH - 250W	288	T8 - 2-Lamp 6' T8 HO	136
MH - 400W	458	T8 - 2-Lamp U T8	60
		T8 - 3-Lamp 4' T8	89
		T8 - 4-Lamp 4' T8	112

Table 30 - Existing Fixture Rated Wattage Table ⁴³⁹	
--	--

⁴³⁹ Note that not all baseline fixtures are appropriate for each measure. For example, and incandescent exit sign cannot be the baseline for a new super-efficient T8. The selection of baseline fixtures is controlled within effRT based on the selected measure code.

Space Type	LPD _{BASE}	Space Type	LPD _{BAS}
Active Storage	0.8	Health Care (Operating Room)	2.2
Active Storage (For Health Care)	0.9	Health Care (Patient Room)	0.7
Atrium (Each Additional Floor)	0.2	Health Care (Pharmacy)	1.2
Atrium (First 3 Floors)	0.6	Health Care (Physical Therapy)	0.9
Audience/Seating Area	0.9	Health Care (Radiology)	0.4
Audience/Seating Area (For Convention Center)	0.7	Health Care (Recovery)	0.8
Audience/Seating Area (For Exercise Center)	0.3	Hotel/Motel Guest Rooms	1.1
Audience/Seating Area (For Gymnasium)	0.4	Inactive Storage	0.3
Audience/Seating Area (For Motion Picture Theater)	1.2	Inactive Storage (For Museum)	0.8
Audience/Seating Area (For Penitentiary)	0.7	Laboratory	1.4
Audience/Seating Area (For Performing Arts Theater)	2.6	Library (Card File and Cataloging)	1.1
Audience/Seating Area (For Religious Buildings)	1.7	Library (Reading Area)	1.2
Audience/Seating Area (For Sports Arenas)	0.4	Library (Stacks)	1.7
Audience/Seating Area (For Transportation)	0.5	Lobby	1.3
Automotive (Service/Repair)	0.7	Lobby (For Hotel)	1.1
Bank/Office (Banking Activity Area)	1.5	Lobby (For Motion Picture Theater)	1.1
Classroom/Lecture/Training	1.4	Lobby (For Performing Arts Center)	3.3
Classroom/Lecture/Training (For Penitentiary)	1.3	Lounge/Recreation	1.2
Conference/Meeting/Multipurpose	1.3	Lounge/Recreation (For Health Care)	0.8
Convention Center (Exhibit Space)	1.3	Manufacturing (Control Room)	0.5
Corridor/Transition	0.5	Manufacturing (Detailed Manufacturing)	2.1
Corridor/Transition (For Health Care)	1	Manufacturing (Equipment Room)	1.2
	0.5	Manufacturing (High Bay, >25 ft. Ceiling	4 7
Corridor/Transition (For Manufacturing Facility)	0.5	Height)	1.7
Courthouse/Police Station/Penitentiary (Confinement Cells)	0.9	Manufacturing (Low Bay, <25 ft. Ceiling Height)	1.2
Courthouse/Police Station/Penitentiary (Courtroom)	1.9	Museum (General Exhibition)	1
Courthouse/Police Station/Penitentiary (Judges'			
Chambers)	1.3	Museum (Restoration)	1.7
Dining Area	0.9	Office (Enclosed)	1.1
Dining Area (For Bar/Lounge/Leisure Dining)	1.4	Office (Open Plan)	1.1
Dining Area (For Family Dining)	2.1	Parking Garage (Garage Area)	0.2
Dining Area (For Hotel)	1.3	Post Office (Sorting Area)	1.2
Dining Area (For Motel)	1.2	Religious Buildings (Fellowship Hall)	0.9
Dining Area (For Penitentiary)	1.3	Religious Buildings (Worship Pulpit/Choir)	2.4
Dormitory Living Quarters	1.1	Restrooms	0.9
Dressing/Locker/Fitting Room	0.6	Retail (Mall Concourse)	1.7
Electrical/Mechanical	1.5	Retail (Sales Area)	1.7
Fire Stations (Engine Room)	0.8	Sales Area	1.7
Fire Stations (Sleeping Quarters)	0.3	Sports Arena (Court Sports Area)	2.3
Food Preparation	1.2	Sports Arena (Indoor Playing Field Area)	1.4
Gymnasium/Exercise Center (Exercise Area)	0.9	Sports Arena (Ring Sports Area)	2.7
Gymnasium/Exercise Center (Playing Area)	1.4	Stairs (Active)	0.6

Table 31 – Lighting Power Allowance (Watt/ft²) by Space-Type

Appendix D: Lighting Installed and Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)

Space Type		Space Type	
·	2/101	· "	E
		Transportation (Air/Tran/Bus - Baggage	
Health Care (Emergency)	2.7	Area)	1
Health Care (Exam/Treatment)	1.5	Transportation (Airport - Concourse)	0.6
Health Care (Laundry/Washing)	0.6	Transportation (Terminal - Ticket Counter)	1.5
Health Care (Medical Supply)	1.4	Warehouse (Fine Material Storage)	1.4
Health Care (Nursery)	0.6	Warehouse (Medium/Bulky Storage)	0.9
Health Care (Nurses' Station)	1	Workshop	1.9

Appendix E: Prescriptive Lighting Measure Cost

Maasura Coda Maasura Subdivision		Installed Cost:	Installed Cost:	Incromontal Cost	
Weasure coue		High Efficiency	Standard Practice		
L10	NA	\$36	\$0	\$36	
L10.1	NA	\$36	\$0	\$36	
L15	NA	\$85	\$0	\$85	
L15.1	NA	\$85	\$0	\$85	
L16	NA	\$93	\$45	\$48	
L20	NA	\$86	\$0	\$86	
L25	NA	\$72	\$0	\$72	
L30	NA	\$92	\$0	\$92	
L30.1	NA	\$92	\$0	\$92	
L31	NA	\$94	\$63	\$31	
L32	NA	\$175	\$0	\$175	
L32.1	NA	\$175	\$0	\$175	
L33	NA	\$143	\$63	\$80	
L35	NA	\$174	\$67	\$107	
	<=195W	\$150	\$0	\$150	
L40	>195W	\$269	\$0	\$269	
	<=195W	\$150	\$100	\$50	
L41	>195W	\$269	\$140	\$129	
L50	NA	\$68	\$0	\$68	
L60	NA	\$74	\$0	\$74	
L70	NA	\$120	\$0	\$120	
L71	NA	\$59	\$0	\$59	
X10	NA	\$47	\$0	\$47	
\$8	NA	\$500	\$0	\$500	
	<50 W	\$330	\$0	\$330	
S10	50-100 W	\$585	\$0	\$585	
	>100 W	\$830	\$0	\$830	
	<50 W	\$330	\$215	\$115	
S11	50-100 W	\$585	\$400	\$185	
	>100 W	\$830	\$565	\$265	
S12	NA	\$370	\$0	\$370	
\$13	NA	\$370	\$130	\$240	
\$16	LED Canopy < 50 W	\$350	\$0	\$350	

Table 32 – Measure Costs for Prescriptive Lighting⁴⁴⁰

⁴⁴⁰ Measure cost analysis performed by <u>GDS</u> based on projects from second half of FY15.

Massura Cada Massura Subdivision		Installed Cost:	Installed Cost:	Incromontal Cost
ivieasure code			Standard Practice	incremental Cost
	LED Canopy 50 W – 80 W	\$550	\$0	\$550
	LED Canopy > 80 W	\$600	\$0	\$600
	LED Canopy < 50 W	\$350	\$250	\$100
S17	LED Canopy 50 W – 80 W	\$550	\$350	\$200
	LED Canopy > 80 W	\$600	\$450	\$150
S20	NA	\$75	\$0	\$75
S21	NA	\$75	\$60	\$15
	LED Flood/Spot <50 W	\$280	\$0	\$280
S22	LED Flood/Spot 50W – 100 W	\$500	0	\$500
	LED Flood/Spot ≥100 W	\$700	\$0	\$700
	LED Flood/Spot <50W	\$280	\$110	\$170
S23	LED Flood/Spot 50W – 100W	\$500	\$210	\$290
	LED Flood/Spot ≥100 W	\$700	\$310	\$390
\$30	NA	\$192	\$0	\$192
S31	NA	\$192	\$100	\$92
\$32	NA	\$220	\$0	\$220
\$33	NA	\$220	\$100	\$120
	LED 2x2 Interior Fixture <50 W	\$160	\$0	\$160
	LED 2x2 Interior Fixture ≥50W	\$205	\$0	\$205
SEO	LED 2x4 Interior Fixture <50W	\$190	\$0	\$190
350	LED 2x4 Interior Fixture ≥50W	\$239	\$0	\$239
	LED 1x4 Interior Fixture <40W	\$164	\$0	\$164
LED 1x4 Interior Fixture ≥40W		\$220	\$0	\$220
	LED 2x2 Interior Fixture <50W	\$160	\$60	\$100
	LED 2x2 Interior Fixture ≥50W	\$205	\$78	\$127
CE1	LED 2x4 Interior Fixture <50W	\$190	\$72	\$118
331	LED 2x4 Interior Fixture ≥50W	\$239	\$92	\$147
	LED 1x4 Interior Fixture <40W	\$164	\$61	\$103
	LED 1x4 Interior Fixture ≥40W	\$220	\$84	\$136
	Retrofit Kit for LED 2x2 Interior Fixture <50W	\$160	\$0	\$160
	Retrofit Kit for LED 2x2 Interior Fixture ≥50W	\$205	\$0	\$205
S52	Retrofit Kit for LED 2x4 Interior Fixture <50W	\$190	\$0	\$190
	Retrofit Kit for LED 2x4 Interior Fixture ≥50W	\$239	\$0	\$239
	Retrofit Kit for LED 1x4 Interior Fixture <40W	\$164	\$0	\$164
Retrofit Kit for LED 1x4 Interior Fixture ≥40W		\$220	\$0	\$220
\$60	LED High/Low Bay Fixtures <150W	\$450	\$0	\$450
300	LED High/Low Bay Fixtures ≥150W	\$585	\$0	\$585
\$61	LED High/Low Bay Fixtures <150W	\$450	\$140	\$310
301	LED High/Low Bay Fixtures ≥150W	\$585	\$140	\$445

Measure Code	Measure Subdivision	Installed Cost: High Efficiency	Installed Cost: Standard Practice	Incremental Cost
\$70	LED Stairway ≤ 40 W	\$250	\$0	\$250
370	LED Stairway > 40 W	\$325	\$0	\$325
\$71	LED Stairway ≤ 40 W	\$250	\$45	\$205
5/1	LED Stairway > 40 W	\$325	\$45	\$280
S80	LED Linear Ambient < 50 W	\$200	\$0	\$200
	LED Linear Ambient 50 W – 100 W	\$300	\$0	\$300
	LED Linear Ambient > 100 W	\$375	\$0	\$375
S81	LED Linear Ambient < 50 W	\$200	\$45	\$155
	LED Linear Ambient 50 W – 100 W	\$300	\$45	\$255
	LED Linear Ambient > 100 W	\$375	\$45	\$330

Appendix F: Average Annual Lighting Operating Hours and other Lookup Tables

Commercial/Industrial			
Building Type	Annual Hours ^A		
Office	3,100		
Restaurant	4,182		
Retail	4,057		
Grocery	4,055		
Warehouse	2,602		
K-12 School	2,187		
College	2,586		
Health	3,748		
Hospital	7,666		
Nursing	5,840		
Home/Assisted			
Living/Health Care			
Lodging	3,064		
Manufacturing	2,857		
Other	2,278 ^B		
Convenience Store	6,376		
Garage/Repair	4,056		
Agricultural 4,698 ^c			
^A New York Technical Reference Manual, 2010.			
^B Average value for "Other" building type in			
Commercial/Industrial sector.			
^C Wisconsin TRM.			

Table 33 – Reference Lighting Annual Operating Hours

Commercial/Industrial					
Space Type % of Annual Lighting Energy Saved (SVG					
Private offices	30%				
Open offices	15%				
Classrooms	30%				
Gymnasiums	35%				
Conference rooms	45%				
Restrooms	40%				
Corridors	15%				
Warehouses	50%				
Storage	55%				
Break room	20%				
Other ^B	25%				

Table 34 – Savings Factors for Lighting Controls

^A SVG values for Gymnasiums, Warehouses, and Storage areas are from IES Paper #43, An Analysis of Energy & Cost Savings Potential of Occupancy Sensors for Commercial Lighting Spaces. 8/16/2000. The SVG value for the "other" category is a conservative estimate of savings intended to ensure reported savings are not overstated when the controls are installed in areas other than those specifically listed.

^B Each industrial/manufacturing space has very specific occupancy patterns, and a literature search revealed no published values for typical savings resulting from controls in these spaces. When sensors are installed in these space types, the "other" category, reflecting the most conservative SVG value should be selected.

Space Type	VentilationRate	Space Type	VentilationRate
Art classroom	0.38	Health club/weight rooms	0.26
Auditorium seating area	0.81	Kitchen (cooking)	0.27
Bank vaults/safe deposit	0.09	Laundry rooms within dwelling units	0.17
Banks or bank lobbies	0.17	Laundry rooms, central	0.17
Barbershop	0.25	Lecture classroom	0.55
Barracks sleeping areas	0.16	Lecture hall (fixed seats)	1.19
Bars, cocktail lounges	0.93	Legislative chambers	0.31
Beauty and nail salons	0.62	Libraries	0.17
Bedroom/living room	0.11	Lobbies	0.81
Booking/waiting	0.44	Lobbies/prefunction	0.29
Bowling alley (seating)	0.52	Main entry lobbies	0.11
Break rooms	0.19	Mall common areas	0.36
Cafeteria/fast-food dining	0.93	Media center	0.37
Cell	0.25	Multipurpose assembly	0.66
Classrooms (age 9 plus)	0.47	Multi-use assembly	0.81
Classrooms (ages 5–8)	0.37	Museums (children's)	0.42
Coffee stations	0.16	Museums/galleries	0.36
Coin-operated laundries	0.21	Music/theater/dance	0.41
		Occupiable storage rooms for liquids or	
Common corridors	0.06	gels	0.13
		Occupiable storage rooms for dry	
Computer (not printing)	0.08	materials	0.07
Computer lab	0.37	Office space	0.09
Conference/meeting	0.31	Pet shops (animal areas)	0.26
Corridors	0.06	Pharmacy (prep. area)	0.23
Courtrooms	0.41	Photo studios	0.17
Daycare (through age 4)	0.43	Places of religious worship	0.66
Daycare sickroom	0.43	Reception areas	0.21
Dayroom	0.21	Restaurant dining rooms	0.71
Disco/dance floors	2.06	Sales	0.23
Dwelling unit	0.07	Science laboratories	0.43
Electrical equipment rooms	0.06	Shipping/receiving	0.12
Elevator machine rooms	0.12	Sorting, packing, light assembly	0.17
Gambling casinos	1.08	Spectator areas	1.19
Game arcades	0.33	Sports arena (play area)	0.3

Table 35 – Ventilation Rates (CFM/ft²)⁴⁴¹

⁴⁴¹ ASHRAE Standard 62.1 Outdoor Air Rates, Table 6-1 and Table E-1. The ventilation rates are the combined rates for CFM per person and CFM per area based on default values for occupancy.

General manufacturing (excludes heavy industrial and processes using			
chemicals)	0.25	Stages, studios	0.76
Guard stations	0.14	Storage rooms	0.12
Gym, stadium (play area)	0.3	Supermarket	0.12
Health Care: Patient Rooms	0.25	Swimming (pool & deck)	0.48
Health Care: Medical Procedure	0.30	Telephone closets	0
Health Care: Operating Rooms	0.60	Telephone/data entry	0.36
Health Care: Recovery and ICU	0.30	Transportation waiting	0.81
Heatlh Care: Autopsy Rooms	0.50	University/college laboratories	0.43
Health Care: Physical Therapy	0.30	Warehouses	0.06
Health club/aerobics room	0.86	Wood/metal shop	0.38

Table 36 – Refrigeration Bonus Factors

		Temperature		
Measures	Bonus Factor	Low (COP = 2.0)	Medium (COP = 3.5)	High (COP = 5.4)
R10 Evaporator Fan Motor Controls R40/R41/R42 H.E. Evaporative Fan Motors	(1 + 1/COP) ^A	1.5	1.3	1.2
R20 Door Heater Controls R30/R31 Zero Energy Doors for Coolers/Freezers	(1 + 0.65/COP) ^B	1.3	1.2	1.1

^A Based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F.

^B Based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and manufacturers assumption that 65% of heat generated by door enters the refrigerated case (1+ 0.65/COP).

Appendix G: Custom Projects – Process Documentation

This appendix documents the eligibility, application and proposal requirements, and the review process for custom projects under the Business Incentive Program and the Large Custom Program.

PROJECT ELIGIBILITY

Business Incentive Program

The qualification requirements for custom incentives within the Business Incentive Program are:

- Eligible Measures: Measures representing technologies that are not supported by the Business Incentive Program (e.g., screw-in compact fluorescent bulbs), or are prohibited by the Business Incentive Program's Terms and Conditions (e.g., power conditioners), will not be considered for custom incentives regardless of project economics.
- Benefit/cost ratio > 1.0: Custom projects must have a benefit/cost ratio greater than 1.0 as determined in the Efficiency Maine screening tool. In calculating the B/C ratio for Custom Project screening, the benefit is calculated as the net present value of the projected avoided cost of the saved energy (kWh) from the project, over the defined measure life, and the cost is the measure cost appropriate to the Project Type (incremental cost for new construction or replacement and full measure cost for retrofit).
- Simple Payback < (0.5 × Measure Life): Custom projects must generally produce a simple payback that is less than ½ of the measure life, where the simple payback is calculated based on measure cost, annual energy savings validated in the application review process, and the average site-specific blended energy cost. The magnitude of any custom project incentive is limited to an amount that reduces the simple payback to 1 year.
- **Preapproval prior to implementation:** Preapproval is required for all custom incentives. Measures that are implemented before preapproval is obtained are not eligible for incentives. Incentive application forms are provided for the following types of Custom measures:
 - Custom Lighting
 - Custom HVAC
 - Custom VFD
 - Custom Compressed Air
 - Custom Miscellaneous

Large Customer Program

In the Large Customer Program, customers may implement energy efficiency and/or distributed generation projects.

The qualification requirements for Large Customer **<u>energy efficiency</u>** projects are:

- The incentive recipient must have an account with a Maine electric utility and must purchase kWh greater than the total kWh reductions from the measures proposed.
- The project measure(s) must increase the end-use electrical efficiency relative to an established baseline, resulting in reductions in annual electricity consumption relative to the baseline.
- The project measure(s) must be eligible measure(s) under the Efficiency Maine Business Incentive Program (Prescriptive or Custom), but for the size of the incentive requested. Products and technologies that are defined as ineligible under the Efficiency Maine Business Incentive program are not eligible for funding under the Large Commercial Program.

• Measure(s) must meet or exceed efficiency and performance standards required under the Business Incentive Program.

The qualification requirements for Large Customer **<u>distributed generation</u>** projects awarded *before January 30, 2014* are:

- **On-Site:** The project must be on-site at a single location or campus.
- **Benefit/cost ratio > 1.0:** The project must have a benefit/cost ratio greater than 1.0 as determined in the Efficiency Maine screening tool.
- **Reduced Energy Consumption**: The project must result in annual reductions in grid supplied energy consumption (no credit is provided for additional capacity that can be exported to the grid or other end users).
- **Capacity** ≤ **5** MW: The project may not exceed 5 MW of nameplate capacity.
- **Operating Efficiency > 60%**. Project must have an overall operating efficiency greater than 60%.
- Metering: The project must have 15-minute metering capable of exporting data to Efficiency Maine in CSV or XML format.

The qualification requirements for Large Customer <u>distributed generation</u> projects awarded *after January 30, 2014* are:⁴⁴²

- **On-Site:** The project must be on-site at a single location or campus.
- **Benefit/cost ratio > 1.0:** The project must have a benefit/cost ratio greater than 1.0 as determined in the Efficiency Maine screening tool.
- **Reduced Energy Consumption**: The project must result in annual reductions in grid supplied energy consumption (no credit is provided for additional capacity that can be exported to the grid or other end users).
- **Operating Efficiency > 60%**. Project must have an overall operating efficiency greater than 60%.
- **Metering:** The project must have metering capable of recording MW and MVAR in real time or recording MWh at 5-minute intervals and must be able to export metering data to Efficiency Maine in CSV or XML format automatically every month.

PROJECT APPLICATION AND PROPOSAL REQUIREMENTS

All applications and proposals for Custom Projects through the Business Incentive Program and Large Customer Program must include:

- An analysis and description of the projected energy savings, including all data, calculations, spreadsheet tools, and the basis for any assumptions clearly presented.
- Cut sheets and manufacturers performance data that is pertinent to the savings analysis.
- Clearly worded descriptions of the baseline and the energy efficient equipment and operating conditions.

⁴⁴² EMT updated the eligibility requirements for projects completed after January 30, 2014.

• Equipment and installation costs associated with each component of the proposed measures. For new or replacement measures, cost data must be provided for both the baseline and the energy efficient options.

REVIEW OF APPLICATIONS AND PROPOSALS

Review of the Custom Project Applications (Business Incentive Program) and Proposals (Large Customer Program) consists of the following steps.

1. <u>Initial review</u>. The assigned engineer completes initial review of the application or proposal package to determine if sufficient information is provided to validate appropriateness and make a preliminary eligibility decision.

Based on the initial application review, the assigned reviewing engineer proceeds as follows:

- o If application is *incomplete*, engineer provides written request for additional required information.
- If application appears to be *complete and appropriate* for the program, engineer acknowledges receipt of application and proceeds to Step 2 Validation of submitted measure cost and savings values.
- If application is *inappropriate* for the program to which it was submitted (e.g., project fails basic eligibility requirements), engineer suspends review. For Business Incentive Program, engineer contacts applicant to redirect or explain reason for determination.
- 2. <u>Validation of submitted measure cost</u>. The assigned engineer completes a thorough review of submitted cost data to determine that it is reasonable and that it represents only costs of equipment and installation necessary to facilitate implementation of the proposed measure(s) that lead directly to the projected energy savings.
 - If the submitted costs lack adequate documentation and/or appears to be inappropriate, request additional detail and supporting documents (e.g., vendor quotes, schedule of values, line item budget, etc.).
 - If the submitted costs appear to include inappropriate or extraneous elements, deduct such costs, and document the rationale for the deductions (for example, if the cost reflects installation of a new chiller with a water side economizer, and submitted savings are all associated with the economizer, the measure cost should only be those associated with the economizer).
 - If the submitted costs appear appropriate for the proposed measure(s), proceed to validation of the projected savings.
- 3. <u>Validation of projected annual energy savings</u>. The assigned engineer completes a thorough review of the submitted savings analysis to verify accuracy of calculations and to verify that the analysis is based on accepted engineering practices, documented equipment performance specifications, actual recorded data and/or reasonable and documented assumptions related to operating hours and load profiles.

- If submitted savings analysis is found to include inconsistencies and/or errors that can be readily corrected, make appropriate adjustments to the projected level of savings and document the adjustment.
- If the submitted savings analysis is based on a building simulation model, or other analysis that does not provide details of the underlying actual calculations, validate projected savings through one of the following methods:
 - Review of sufficient inputs and outputs from the model to validate the accuracy and reasonableness of the projection. Historical consumption data for the facility should be requested in cases where it is deemed appropriate; such data can often be useful to verify that models have been calibrated and projected baseline consumption levels are feasible.
 - Independent derivation of the savings based on the submitted equipment performance specifications and load profiles.
- If the submitted savings cannot be validated using the process outlined above, the applicant/bidder should be informed in writing of the deficiencies and the additional documentation that is necessary to complete the review of the application/proposal. In the case of Business Incentive Program applications, the applicant/QP can be advised of Technical Assistance Funding and provided with contacts for technical experts capable of projecting the savings associated with the measure, as appropriate.
- 4. <u>Determination of peak demand savings</u>: The assigned engineer uses the project documentation to calculate the coincident peak demand savings, which are used to report the impact of measures on grid electrical demands during on-peak summer and on-peak winter periods. For all custom projects (Business Incentive Program and Large Customer Program), the reviewing engineer uses the following process to determine and document the project's coincident peak demand savings:
 - The reviewer will calculate the gross reduction in input kW resulting from the measure using one of the following methods:
 - Demand Reduction (kW)= overall connected kW of the base line system overall connected load of the proposed system
 - Average Demand Reduction (kW) = Validated Annual Energy Savings (kWh/year) / Annual Operating Hours (hours/year)
 - If the measure technology is described in one of the categories with coincidence factors provided in Appendix C of this document, apply the appropriate coincidence factor from Appendix C to the calculated average demand reduction and document the resulting summer and winter demand impact using the following formula.
 - Summer Peak Demand savings (kW) = Average Demand Reduction (kW) x Applicable Summer Coincidence Factor (%)
 - Winter Peak Demand savings (kW) = Average Demand Reduction (kW) x Applicable Winter Coincidence Factor (%)

 For cases where the measure technology does not fit within a category with coincidence factors provided in Appendix C, or where it is defined by the category but the load shape is clearly documented as non-typical for the category (e.g., exterior lighting with photo-cell control), the reviewing engineer will use the available data to predict and document the project specific winter and summer peak demand savings.

In many cases, the submitted savings analysis will include an hourly projection of baseline and proposed consumption that will allow the engineer to quickly and accurately calculate project specific peak demand savings using the following algorithm:

- Average Summer Peak Demand savings (kW) = [Validated Annual Energy Savings During Summer Coincident Demand Hours (kWh/year]) / [Total Number of Summer Coincident Demand Hours (hrs/year)]
- Average Winter Peak Demand savings (kW)= [Validated Annual Energy Savings During Winter Coincident Demand Hours (kWh/year)] / [Total Number of Winter Coincident Demand Hours (hrs/year)]

In other cases, the load shape data included in the submitted savings analysis will be less specific, and the engineer will use whatever site specific data is available and apply assumptions to extrapolate a reasonable approximation of the demand savings during coincident peak summer and winter hours.

5. <u>Validation of cost effectiveness</u>: Once measure cost and annual energy savings have been validated, the reviewing engineer verify and validate the project meets the cost-effectiveness requirements as documented above (under PROJECT ELIGIBILITY).

To complete this step, the engineer will enter the following data into the Efficiency Maine screening tool:

- Measure life
- Validated annual energy savings
- Projected peak demand savings
- Validated measure cost
- Blended average energy cost⁴⁴³
- 6. **Documentation:** The reviewing engineer will use the Efficiency Maine *Custom Incentive Review Summary Template* to document the review process, including the following elements:
 - Brief summary of the submitted application/proposal including a measure description, measure cost, projected annual savings and requested incentive amount.
 - Brief summary of the review process with specific mention of any adjustments to the submitted cost and savings values including the rationale supporting these adjustments.

⁴⁴³ The blended average cost values provided with the application are typically based on a single monthly bill. In cases where this blended average cost value significantly impacts eligibility and/or the magnitude of the available incentive, additional effort will be made to validate these values based on a recent 12 months of historical cost and consumption data.

- Explanation of the reviewing engineer's derivation of the peak demand savings.
- Efficiency Maine screening tool inputs and outputs, including, but not limited to: energy savings, peak demand savings, measure life, benefit-cost ratio and simple payback period, and projects.
- The approved incentive level.